Muutke küpsiste eelistusi

E-raamat: Nanopharmaceutical Advanced Delivery Systems

Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Dec-2020
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119711674
  • Formaat - PDF+DRM
  • Hind: 249,41 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Dec-2020
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119711674

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book provides a single volume covering detailed descriptions about various delivery systems, their principles and how these are put in use for the treatment of multiple diseases. It is divided into four sections where the first section deals with the introduction and importance of novel drug delivery system. The second section deals with the most advanced drug delivery systems like microbubbles, dendrimers, lipid-based nanoparticles, nanofibers, microemulsions etc., describing the major principles and techniques of the preparations of the drug delivery systems. The third section elaborates on the treatments of diverse diseases like cancer, topical diseases, tuberculosis etc.  The fourth and  final section provides a brief informative description about the regulatory aspects of novel drug delivery system that is followed in various countries.
Preface xxi
Part 1 Introduction to the Fundamentals
1(78)
1 Lipid-Based Nanocarriers as Drug Delivery System and Its Applications
3(28)
Vikas Jain
Hitesh Kumar
Pallavi Chand
Sourabh Jain
S. Preethi
List of Abbreviations
3(1)
1.1 Introduction
4(1)
1.2 An Overview on Nanocarriers
5(1)
1.3 Types of Nanocarriers
6(6)
1.3.1 Liposomes
6(1)
1.3.2 Solid Lipid Nanoparticles
7(1)
1.3.3 Nanostructured Lipid Carriers System
7(2)
1.3.4 Nanoemulsion
9(1)
1.3.5 SMEDDS, SEDDS, and SNEDDS
9(1)
1.3.6 Crystalline Mesophases
10(2)
1.4 Methods of Preparation of Lipid Nanocarriers
12(1)
1.5 Challenges and Hurdles
12(2)
1.5.1 Scale Up and Stability Issues
12(2)
1.5.2 In Vivo Elimination of Nanocarriers
14(1)
1.6 Characterization Techniques for Lipid Nanocarriers
14(3)
1.6.1 Size and Morphology
14(1)
1.6.2 Surface Charge
15(1)
1.6.3 Thermal Analysis
16(1)
1.6.4 X-Ray Diffraction
16(1)
1.6.5 Spectroscopic Analysis
16(1)
1.7 Application of Lipid-Based Nanocarriers
17(2)
1.7.1 Application in Drug Delivery
17(1)
1.7.2 Application in Therapeutic Nucleic Acid Delivery
18(1)
1.7.3 Application in Delivery of Peptide/Hormone
19(1)
1.8 Conclusion
19(1)
References
20(11)
2 Nanoparticulate Carriers--Versatile Delivery Systems
31(24)
Ruchi Chawla
Varsha Rani
Mohini Mishra
List of Abbreviations
31(1)
2.1 Introduction
32(1)
2.2 Classification of Nanoparticulate Carriers
33(10)
2.2.1 Lipid-Based Nanocarriers
33(4)
2.2.1.1 Ph-Sensitive Lipid Carriers
37(1)
2.2.1.2 Thermo-Responsive Lipid Carriers
38(1)
2.2.2 Micellar Systems
39(1)
2.2.3 Theranostics
39(1)
2.2.3.1 Gold Nanoparticles (AuNPs)
39(1)
2.2.3.2 Iron Oxide Nanoparticles
40(1)
2.2.3.3 Quantum Dots
40(1)
2.2.4 Self-Emulsifying Drug Delivery Systems (SEDDS)
41(1)
2.2.5 Polymer-Based Nanoparticles
41(2)
2.3 Various Applications of Nanoparticulate Carriers
43(2)
2.3.1 Tissue Engineering and Regenerative Medicine
43(1)
2.3.2 Delivery of Proteins
44(1)
2.3.3 Delivery of Vaccines
44(1)
2.3.4 Gene Therapy
44(1)
2.3.5 Phagokinetic Studies
45(1)
2.4 Modes of Transport of Nanoparticulate Carriers
45(3)
2.5 Conclusion
48(1)
References
48(7)
3 Nanotools in Customized Drug Delivery System
55(24)
K. J. Thirumalai Subramaniam
Gowthamarajan Kuppusamy
Arun Radhakrishnan
Veera Venkata Satyanarayana Reddy Karri
List of Abbreviations
55(1)
3.1 Introduction
56(1)
3.2 Concept of Personalized Medicines
57(3)
3.3 Customized Nanotools and Their Benefits
60(10)
3.3.1 Liposomes
64(1)
3.3.2 Solid Lipid Nanoparticles (SLNs)
65(1)
3.3.3 Nanocarbon Tubes
66(1)
3.3.4 Polymer-Based Nanoparticles
66(1)
3.3.5 Polymer-Based Micelles
66(1)
3.3.6 Dendrimers
67(1)
3.3.7 Metallic Nanoparticles
68(1)
3.3.7.1 Gold Nanoparticles
68(1)
3.3.7.2 Iron Oxide Nanoparticles
69(1)
3.3.8 Quantum Dots
69(1)
3.3.9 Nanodiamonds
69(1)
3.4 Applications of Nanotechnology in Personalized Medicine
70(3)
3.5 Future Perceptions
73(1)
3.6 Conclusion
74(1)
References
74(5)
Part 2 Novel and Modernized Nanoscale Delivery Systems: Revolutionary Progress in the Field of Pharmacy
79(254)
4 Dendrimers: Role in Novel Drug Delivery
81(18)
Pooja Mittal
Ramit Kapoor
Brahmeshwar Mishra
List of Abbreviations
81(1)
4.1 Introduction
81(2)
4.1.1 Advantages of Dendrimers
82(1)
4.1.2 Role of Dendrimers in Drug Delivery
82(1)
4.2 Components of Dendrimers
83(1)
4.3 Synthesis of Dendrimers
84(1)
4.4 Classification of Dendrimers
84(4)
4.4.1 Hydrophilic Dendrimers
85(1)
4.4.2 Biodegradable Dendrimers
85(1)
4.4.3 Dendrimers with Amino Acids
85(1)
4.4.4 Glycodendrimers
86(1)
4.4.5 Hydrophobic Dendrimers
86(1)
4.4.6 Asymmetric Dendrimers
86(1)
4.4.7 Simple Dendrimers
86(1)
4.4.8 Liquid Crystalline Dendrimers
87(1)
4.4.9 Chiral Dendrimers
87(1)
4.4.10 Micellar Dendrimers
87(1)
4.4.11 Hybrid Dendrimers
87(1)
4.4.12 Amphiphilic Dendrimers
87(1)
4.4.13 Metallodendrimers
87(1)
4.4.14 Tectodendrimers
87(1)
4.4.15 Multilingual Dendrimers
88(1)
4.4.16 Multiple Antigen Peptide Dendrimers
88(1)
4.5 Properties of Dendrimers
88(1)
4.6 Mechanism of Drug Entrapment in Dendrimers
89(2)
4.6.1 Physical Encapsulation of the Drugs
90(1)
4.6.2 Electrostatic Interactions
90(1)
4.6.3 Covalent Conjugations
90(1)
4.7 Dendrimers as Delivery Agents
91(3)
4.7.1 Dendrimers as Oral Drug Delivery System
91(2)
4.7.2 Dendrimers in Nasal Drug Delivery
93(1)
4.7.3 Dendrimers as Carriers for Anticancer Treatment and Diagnosis
93(1)
4.7.3.1 Dendrimers as Carriers for Anticancer Drugs
93(1)
4.7.3.2 Dendrimers as Diagnostic Agents Cancer
94(1)
4.8 Conclusion
94(1)
References
95(4)
5 Nanofibers in Drug Delivery
99(26)
Dipak Kumar Sahu
Goutam Ghosh
Goutam Rath
List of Abbreviations
99(2)
5.1 Introduction
101(8)
5.2 Nanofiber as Oral Drug Delivery System
109(1)
5.3 Nanofiber as Topical Drug Delivery System
110(2)
5.4 Nanofiber as Parenteral Drug Delivery System
112(1)
5.5 Nanofiber as Multimodal Drug Delivery System
112(6)
5.5.1 Cardiovascular Disorder
112(1)
5.5.2 Stent Coating
113(1)
5.5.3 Hormone
113(1)
5.5.4 Vitamins
113(1)
5.5.5 Probiotic
114(1)
5.5.6 Antimicrobial Therapy
114(1)
5.5.7 Cancer
115(1)
5.5.8 Contraceptive
116(1)
5.5.9 Antihistamine
117(1)
5.5.10 Trauma
117(1)
5.6 Challenges and Future Perspective
118(1)
5.7 Conclusion
118(1)
References
118(7)
6 Microbubbles used for Drug Delivery System
125(20)
Hemraj Heer
Vishav Prabhjot Kaur
Sandeep Rathor
Sheikh Aamir
Charan Singh
List of Abbreviations
125(1)
6.1 Introduction
126(1)
6.2 Structural Components of Microbubble
127(3)
6.2.1 Innermost Core
128(1)
6.2.2 Shell Materials
128(1)
6.2.2.1 Protein Shells
128(1)
6.2.2.2 Surfactant Shells
128(1)
6.2.2.3 Lipid-Coated MBs
128(1)
6.2.2.4 Polymer Shells
129(1)
6.3 Methods of Preparation Microbubbles
130(2)
6.3.1 Sonication Technique
130(1)
6.3.2 Cross-Linked Polymer Technique
130(1)
6.3.3 Emulsion Solvent Evaporation Technique
131(1)
6.3.4 Atomization and Reconstitution Technique
132(1)
6.4 Acoustic Nature of Microbubble
132(1)
6.4.1 Response Under Low Frequency
132(1)
6.4.2 Response Under High Frequency
133(1)
6.5 Characterizations of Microbubbles
133(2)
6.5.1 Determination of Bubble Size
133(1)
6.5.2 Determination of Bubble Densities
134(1)
6.5.3 In Vitro Floating Properties
134(1)
6.5.4 Microscope Observation and Diameter Measurement
135(1)
6.5.5 MB Diameter Measurement
135(1)
6.5.6 MB Concentration Determination
135(1)
6.5.7 Acoustic Stability of MBs
135(1)
6.6 Applications of Microbubbles
135(4)
6.6.1 Diagnostic Applications of Microbubble
136(1)
6.6.2 Therapeutic Potential of Microbubbles
137(2)
6.7 Conclusions and Future Prospective
139(1)
References
139(6)
7 Virosomes: A Viral Envelope System Having a Promising Application in Vaccination and Drug Delivery System
145(16)
Ankit Kalra
Shilpa Sharma
List of Abbreviations
145(1)
7.1 Introduction
146(1)
7.2 What are Virosomes?
147(1)
7.3 Comparison of Virosomes With Liposomes
148(1)
7.4 Methods of Preparation of Virosomes
148(1)
7.4.1 Selection of Virus
148(1)
7.4.2 Selection of Compound of Interest (Antigen/Drug/Macromolecule)
149(1)
7.4.3 Membrane Reconstitution
149(1)
7.5 Characterization of Virosomes
149(1)
7.6 Applications of Virosomal Technology
150(7)
7.6.1 Virosomes for Vaccination
151(1)
7.6.1.1 Virosomes for Antigen Delivery
151(1)
7.6.1.2 Virosomes as Adjuvants in Human Vaccine Formulations
152(1)
7.6.1.3 Virosomes Complexed With Adjuvants
153(1)
7.6.1.4 Some Commercial Virosome-Based Vaccines
154(1)
7.6.2 Virosomes for Drug Delivery
154(1)
7.6.3 Virosomes for Cancer Immunotherapy
155(2)
7.7 Conclusion
157(1)
References
157(4)
8 Nanocarriers: A Tool for Effective Gene Delivery
161(26)
Rita N. Wadetwar
Amita P. Godbole
List of Abbreviations
161(1)
8.1 Introduction
162(1)
8.2 Key Steps in Gene Delivery
163(1)
8.3 Success and Existing Challenges for Gene Delivery
163(1)
8.4 In Vitro and In Vivo Barriers Towards Successful Gene Transfer
164(1)
8.5 Genetic Material That can be Delivered in Gene Therapy
165(1)
8.6 Role of Nanocarriers in a Nucleic Acid Delivery
165(1)
8.7 Nanocarriers used for Delivering Gene
166(9)
8.7.1 Polymeric Nanocarriers
166(1)
8.7.2 Lipid Nanocarriers
166(3)
8.7.3 Protein Nanocarriers for Gene Delivery
169(1)
8.7.4 Magnetic Nanocarriers
170(1)
8.7.5 Gold Nanocarrier
171(1)
8.7.6 Quantum Dots
172(1)
8.7.7 Dendrimers
172(1)
8.7.8 Stimuli Responsive Nanocarriers
173(1)
8.7.9 Ph Sensitive Liposomes
174(1)
8.7.10 Temperature Responsive Nanocarriers
174(1)
8.7.11 Redox Sensitive Nanocarriers
175(1)
8.8 Cellular Uptake of Nanocarriers and Their Fate Inside the Cell
175(1)
8.8.1 Cellular Uptake and Intracellular Trafficking of NPs
175(1)
8.9 Physicochemical Properties of Nanoparticles Affecting Their Uptake
176(1)
8.10 Targeted Delivery of Genes Using Nanocarriers
177(1)
8.11 Virosomes
177(1)
8.12 Exosomes
178(2)
8.13 Diseases Cured by Gene Therapy
180(1)
8.14 Clinical Trials
180(1)
8.15 Current Trends and Approved Products
180(3)
8.16 Concluding Remarks
183(1)
References
183(4)
9 Phytosomes--Nanoarchitectures' Promising Clinical Applications and Therapeutics
187(30)
Pankaj Pal
Vivek Dave
Shailendra Paliwal
Monika Sharma
Mrugendra B. Potdar
Avnica Tyagi
List of Abbreviations
187(1)
9.1 Introduction
188(1)
9.1.1 Phytosomes
189(1)
9.2 Structure of Phytosomes
189(1)
9.3 Components of Phytosomes
190(2)
9.3.1 Phyto-Active Ingredients
190(1)
9.3.2 Phospholipids
191(1)
9.3.3 Stoichiometric Ratio of Phospholipids and Active Phyto-Constituents
191(1)
9.3.4 Solvents
192(1)
9.4 Synthesis of Phytosomes
192(1)
9.4.1 Methods
192(1)
9.5 Characterization of Phytosomes
193(3)
9.5.1 Morphological Visualization
193(1)
9.5.2 Stability of Vesicles
193(1)
9.5.3 Zeta Potential and Vesicle Size
194(1)
9.5.4 Transition Temperature
194(1)
9.5.5 Surface Tension
194(1)
9.5.6 Entrapment Efficiency
195(1)
9.5.7 Partition Co-Efficient and Solubility
195(1)
9.5.8 Spectroscopic Approaches
195(1)
9.5.8.1 Fourier Transform Infrared Spectroscopy (FTIR)
195(1)
9.5.8.2 Nuclear Magnetic Resonance (NMR)
195(1)
9.6 Absorption Mechanism of Phytosomes
196(1)
9.7 Applications of Phytosomes
196(4)
9.7.1 Phytosomes in Cancer Therapy
197(1)
9.7.2 Phytosomes in Diabetes
198(1)
9.7.3 Phytosomes in Brain Delivery
199(1)
9.7.4 Phytosomes in Wound Healing
199(1)
9.7.5 Phytosomes in Liver Diseases
200(1)
9.8 Recent Trends and Advancements in Phytosomal Delivery
200(8)
9.9 Future Perspectives
208(1)
9.10 Conclusion
209(1)
References
210(7)
10 Saponin Stabilized Emulsion as Sustainable Drug Delivery System: Current Status and Future Prospects
217(20)
Priyanka Yatham
Yogita Dahat
Arshad Khan
Rinku Baishya
Amit K. Srivastava
Deepak Kumar
List of Abbreviations
217(1)
10.1 Introduction
218(1)
10.2 Saponins as Surfactant
219(10)
10.2.1 Quillaja saponaria
219(4)
10.2.2 Sapindus mukorossi
223(1)
10.2.3 Glycyrrhiza glabra
224(1)
10.2.4 Panax ginseng
225(1)
10.2.5 Tea Saponins
226(1)
10.2.6 Aesculus hippocastanum
227(1)
10.2.7 Yucca schidigera
227(1)
10.2.8 Verbascum nigrum
228(1)
10.2.9 Saponaria officinalis
228(1)
10.3 Pharmaceutical Advantages
229(1)
10.4 Conclusion and Future Prospects
230(1)
References
231(6)
11 Mono and Multi-Stimuli Responsive Polymers: Application as Intelligent Nano-Drug Delivery Systems
237(30)
Archana Sidagouda Patil
Anand Panchakshari Gadad
Panchaxari Mallappa Dandagi
List of Abbreviations
237(1)
11.1 Introduction
238(2)
11.2 Smart or Stimuli-Responsive Polymers for Drug Delivery
240(11)
11.2.1 Mono-Stimuli Responsive Polymers
240(1)
11.2.2 Dual-Stimuli Responsive Polymers
240(1)
11.2.3 Multi-Responsive Polymers
240(1)
11.2.4 Ph Responsive Polymers and Delivery Systems
240(4)
11.2.5 Temperature Responsive Polymers in Drug Delivery
244(1)
11.2.6 Light Responsive Drug Delivery Systems
245(3)
11.2.7 Magnetically Responsive Polymeric Drug Delivery Systems
248(1)
11.2.7.1 Static (Constant) Field Systems
248(1)
11.2.7.2 Varying Magnet Field Systems (VMFS)
249(1)
11.2.8 Other Stimuli Responsive Polymeric Nanoparticles
249(2)
11.3 Dual and Multi-Stimuli Responsive Drug Delivery Systems
251(6)
11.4 Conclusion
257(1)
References
257(10)
12 An Insight into Nanosomes: Potential Nanopharmaceutical Delivery System
267(18)
Trishna Bal
Sandeep Garg
Aditya Dev Rajora
Shubha Rani Sharma
Harshita Harsh
List of Abbreviations
267(1)
12.1 Introduction
268(3)
12.2 General Methods of Preparation of Nanosomes and Drug Loading
271(2)
12.3 Trafficking Mechanism in the Body
273(2)
12.4 Sterilization of Nanosomes
275(1)
12.5 Evaluation Parameters
275(1)
12.5.1 Determination of Particle Size
275(1)
12.5.2 Determination of Zeta Potential
275(1)
12.5.3 Morphological Study
276(1)
12.5.4 In Vitro Release Studies
276(1)
12.5.5 Determination of Encapsulation Efficiency
276(1)
12.5.6 Re-Dispersibility
276(1)
12.5.7 Stability on Storage
276(1)
12.6 Applications
276(3)
12.7 Conclusion
279(1)
References
279(6)
13 Nano-Structures as Bioelectronics for Controlled Drug Delivery
285(24)
Debabrata Ghosh Dastidar
Dipanjan Ghosh
Gopal Chakrabarti
List of Abbreviations
285(2)
13.1 Introduction
287(3)
13.2 Electroactive Biopolymer
290(2)
13.3 Electrochemical Desorption From Micro and Nanostructures of Conductive Polymers
292(3)
13.4 Electrochemical Desorption From Micro and Nano-Composites of Conductive Polymers
295(2)
13.5 Electrochemical Desorption of Self-Assembled Monolayer From a Gold Surface
297(1)
13.6 Electrochemically Actuated Release of Biochemicals
298(1)
13.7 Biochemical Release Controlled by Electrochemical Erosion of Electrolyte Hydrogel and Nanofilm
299(1)
13.8 Biochemical Release by Electrochemical and Electrothermal Erosion of Metallic Sealing Membranes
300(1)
13.9 Release of Biochemicals by Fluidic Nano-Pumps and Rotating Nano-Motors Powered by Electric Fields
301(3)
13.9.1 Electro-Osmotic Nano-Pumps
301(1)
13.9.2 Nanowires
302(1)
13.9.3 Electrically Driven Nanomotors
303(1)
13.10 Conclusion and Future Aspects
304(1)
References
305(4)
14 Bioadhesive Nanoparticulate Drug Delivery System
309(24)
Rajashree Shashidhar Masareddy
Archana Sidagouda Patil
Anand Panchakshari Gadad
List of Abbreviations
309(1)
14.1 Introduction
310(1)
14.2 Mucous Membrane
311(1)
14.3 Mucoadhesive Forces
311(2)
14.4 Theories of Mucoadhesion
313(2)
14.4.1 Electronic Theory
313(1)
14.4.2 Adsorption Theory
314(1)
14.4.3 Wetting Theory
314(1)
14.4.4 Diffusion Theory
314(1)
14.5 Mechanism of Mucoadhesion
315(1)
14.6 Polymers Used to Prepare Mucoadhesive Nanoparticles
315(2)
14.7 Ideal Properties of Mucoadhesive Polymers
317(1)
14.8 Mucoadhesion of Nanoparticles
318(1)
14.9 Preparation Methods of Mucoadhesive Polymeric Nanoparticles
319(3)
14.9.1 Solvent Displacement Method
319(1)
14.9.2 Surface Modification of Nanoparticles With Mucoadhesive Polymers
320(1)
14.9.3 Emulsion Polymerization
321(1)
14.10 Evaluation of Mucoadhesive Systems
322(3)
14.10.1 In Vitro and Ex Vivo Tests
322(1)
14.10.2 Measurement of Tensile Strength
323(1)
14.10.3 Measurement of Detachment Force
323(1)
14.10.4 Falling Liquid Film Method
323(1)
14.10.5 Colloidal Gold Staining Method
323(1)
14.10.6 Biacore System
324(1)
14.10.7 Confocal Laser Scanning Microscopic (CLSM) Method
324(1)
14.10.8 In Vivo Methods
324(1)
14.10.8.1 Gamma Scintigraphy
324(1)
14.10.8.2 X-Ray (GI Transit Time) Studies
324(1)
14.10.8.3 Isolated Loop Technique
325(1)
14.11 Evaluation Tests of Mucoadhesive Nanoparticulate Systems
325(1)
14.11.1 Adhesion Test
325(1)
14.11.2 Atomic Force Microscopy
325(1)
14.11.3 Fluorophotometric Evaluation
326(1)
14.12 Applications
326(1)
14.13 Conclusion
327(1)
References
327(6)
Part 3 Understanding Targeted Delivery Systems
333(114)
15 Nanopharmaceuticals: An Approach for Effective Management of Breast Cancer
335(22)
Veena S. Belgamwar
Suchitra S. Mishra
Vidyadevi T. Bhoyar
Kunal B. Banode
List of Abbreviations
335(1)
15.1 Introduction
336(1)
15.2 Stages of Breast Cancer
337(1)
15.3 Main Types of Breast Cancer
337(1)
15.4 Drawbacks in Conventional Treatment
338(1)
15.5 Nanoparticulate Approach for Effective Management of Breast Cancer
339(2)
15.6 Systematic Drug Delivery System Approaches
341(3)
15.6.1 Metallic Nano Drug Carrier
341(1)
15.6.1.1 Magnetic Nanoparticles
341(1)
15.6.1.2 Gold Nanoparticles
341(1)
15.6.1.3 Superparamagnetic Iron Oxide (SPIO)
341(1)
15.6.2 Polymer-Based Drug Carriers
342(1)
15.6.2.1 Polymeric Nanoparticles
342(1)
15.6.2.2 Polymeric Micelles
342(1)
15.6.2.3 Dendrimers
343(1)
15.6.3 Drug Carriers Based on Lipid
343(1)
15.6.3.1 Liposomes
343(1)
15.6.4 Viral Nanoparticles
343(1)
15.6.5 Carbon Nanotubes
344(1)
15.7 Nanoparticles Targeted Drug Delivery
344(3)
15.7.1 Morphology of Nanoparticles
345(1)
15.7.1.1 Size
345(1)
15.7.1.2 Surface Characteristics
345(1)
15.7.2 Passive Targeting
345(1)
15.7.2.1 Increase Permeability and Retention Time
345(1)
15.7.2.2 Tumor Physiology
346(1)
15.7.3 Active Targeting
346(1)
15.7.3.1 Antigen or Receptor Expression
347(1)
15.7.3.2 Internalization of Targeted Conjugates
347(1)
15.8 Various Ligands used for Targeting Cancer Cells
347(2)
15.8.1 Folate
347(1)
15.8.2 Aptamer
347(1)
15.8.3 Transferrin
348(1)
15.8.4 Lectins
348(1)
15.8.5 Reverselectin
349(1)
15.8.6 Epidermal Growth Factor Receptor (EGFR)
349(1)
15.8.7 Quantum Dots (QD)
349(1)
15.8.8 SiRNA
349(1)
15.9 New Innovative Pharmaceutical Entities and Targeting Moieties
349(1)
15.10 Future of Cancer Treatment in Nanotechnology
350(1)
15.11 Conclusion
351(1)
References
351(6)
16 Vaginal Nano-Based Drug Delivery System
357(22)
Rita N. Wadetwar
Pranita S. Kanojiya
List of Abbreviation
357(1)
16.1 Introduction
358(1)
16.2 Vaginal Anatomy Physiology and Diseases of Vagina
359(2)
16.2.1 Physiology of Vagina
359(1)
16.2.2 Vaginal Infections
360(1)
16.3 Advantages of Vaginal Drug Delivery
361(1)
16.4 Drawbacks of Conventional Vaginal Formulation
362(1)
16.5 Need of Nanocarriers for Vaginal Delivery
363(1)
16.6 Different Types of Nanoparticles for Vaginal Therapy
363(8)
16.6.1 Concept of pH-Sensitive Nanoparticles
364(1)
16.6.2 Acid Labile Products (Nucleic Materials/Proteins/Peptides)
365(1)
16.6.3 Mucoadhesive Nanoparticles
365(1)
16.6.4 Mucous-Penetrating Nanoparticles
366(1)
16.6.5 PEGylated Nanoparticles
366(1)
16.6.6 Dendrimers
366(1)
16.6.7 Liposomes
367(1)
16.6.8 Niosomes
367(1)
16.6.9 Nanoemulsion
367(1)
16.6.10 Metallic Nanoparticles
367(4)
16.6.11 Diagnostic Nanoparticles
371(1)
16.7 Vaginal Patents
371(2)
16.8 Nanotoxicity: Future Prospective
373(1)
16.9 Conclusion
374(1)
References
374(5)
17 Recent Advances in Polymer-Modified Liposomes for Cancer Treatment
379(28)
Swapnil Sharma
Akansha Bisht
Sanjana Tewari
Vivek Dave
List of Abbreviations
379(1)
17.1 Introduction
380(1)
17.2 Liposomes
380(21)
17.2.1 Structure of Liposomes
380(1)
17.2.2 Classification of Liposomes
381(1)
17.2.3 Preparation of Liposomes
381(1)
17.2.4 Drug Encapsulation Into Liposomes
382(1)
17.2.4.1 Active Loading of a Drug Into Liposome
382(1)
17.2.4.2 Passive Loading of a Drug Into Liposome
383(1)
17.2.5 Mechanism of Liposomes
383(1)
17.2.6 Liposomes in Cancer Treatment
384(1)
17.2.7 Liposomal Formulations Available in Clinical Trials for Cancer Treatment
384(4)
17.2.8 Liposomes Targeting Cancerous Cells
388(1)
17.2.8.1 Liposome Mediated Active Targeting of Cancer Cells
388(2)
17.2.8.2 Liposome Mediated Passive Targeting of Cancer Cells
390(1)
17.2.9 Strategies for Targeting Liposomes at Cancer Specific Site
391(1)
17.2.9.1 Increased Permeability & Retention (EPR) Effect and their Application in Cancer Treatment
391(1)
17.2.9.2 Surface Engineered Liposomes Mediated Active Targeting with Functionalized Targeting Ligands
392(1)
17.2.10 Approaches for Enhanced Delivery of Chemotherapeutic Drugs at Tissue Specific Site via Functionalized Liposomes Responsive Towards Stimuli
393(1)
17.2.10.1 Liposomes Responsive to Temperature
393(2)
17.2.10.2 Liposomes Responsive to pH
395(1)
17.2.10.3 Liposomes Responsive to Magnetic Field
395(1)
17.2.10.4 Liposomes Responsive to Ultrasound
395(1)
17.2.11 Role of Polymers in Drug Delivery for the Treatment of Cancer
395(6)
17.3 Future Challenges Associated With Cancer Therapy
401(1)
17.4 Conclusion
402(1)
References
402(5)
18 Role of Nanomedicines in Neglected Tropical Diseases
407(40)
Rahul Shukla
Atul Mourya
Mayank Handa
Rewati Raman Ujjwal
List of Abbreviations
407(1)
18.1 Introduction
408(1)
18.2 Diseases
409(23)
18.2.1 Buruli Ulcer
409(1)
18.2.1.1 Current Therapeutics for Buruli Ulcer
410(1)
18.2.1.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Buruli Ulcer
410(1)
18.2.2 Chagas Disease
410(1)
18.2.2.1 Current Treatment for Chagas Disease
411(1)
18.2.2.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Chagas Disease
412(1)
18.2.3 Cysticercosis
413(1)
18.2.3.1 Current Treatment for Cysticercosis
413(1)
18.2.3.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Cysticercosis
414(1)
18.2.4 Dengue Fever
414(1)
18.2.4.1 Current Treatment for Dengue Fever
414(1)
18.2.4.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Dengue Fever
415(1)
18.2.5 Dracunculosis
415(1)
18.2.5.1 Current Treatment for Dracunculosis
415(1)
18.2.5.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Dracunculosis
416(1)
18.2.6 Echinococcosis
416(1)
18.2.6.1 Current Treatment for Echinococcosis
416(1)
18.2.6.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Echinococcosis
417(1)
18.2.7 Fascioliasis
417(1)
18.2.7.1 Current Treatment for Fascioliasis
417(1)
18.2.7.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Fascioliasis
418(1)
18.2.8 Foodborne Trematodes
418(1)
18.2.8.1 Current Treatment for Foodborne Trematodes
419(1)
18.2.8.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Foodborne Trematodes
419(1)
18.2.9 Human African Trypanosomiasis
419(1)
18.2.9.1 Current Treatment for Human African Trypanosomiasis
420(1)
18.2.9.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Human African Trypanosomiasis
420(1)
18.2.10 Leishmaniasis
421(1)
18.2.10.1 Current Treatment for Leishmaniasis
421(1)
18.2.10.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Leishmaniasis
421(2)
18.2.11 Leprosy
423(1)
18.2.11.1 Current Treatment for Leprosy
423(1)
18.2.11.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Leprosy
423(1)
18.2.12 Lymphatic Filariasis
424(1)
18.2.12.1 Current Treatment for Lymphatic Filariasis
424(1)
18.2.12.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Lymphatic Filariasis
424(1)
18.2.13 Mycetoma, Chromoblastomycosis and Other Deep Mycoses
425(1)
18.2.13.1 Current Treatment for Mycetoma, Chromoblastomycosis and Other Deep Mycoses
425(1)
18.2.13.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Mycetoma, Chromoblastomycosis and Other Deep Mycoses
425(1)
18.2.14 Onchocerciasis
425(2)
18.2.14.1 Current Treatment for Onchocerciasis
427(1)
18.2.14.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Onchocerciasis
427(1)
18.2.15 Rabies
427(1)
18.2.15.1 Current Treatment for Rabies
428(1)
18.2.15.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Rabies
428(1)
18.2.16 Schistosomiasis
428(1)
18.2.16.1 Current Treatment for Schistosomiasis
428(1)
18.2.16.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Schistosomiasis
429(1)
18.2.17 Snakebite Envenoming
429(1)
18.2.18 Soil-Transmitted Helminthiases
430(1)
18.2.18.1 Treatment for Soil-Transmitted Helminthiases
430(1)
18.2.18.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Soil-Transmitted Helminthiases
430(1)
18.2.19 Trachoma
430(1)
18.2.19.1 Treatment for Trachoma
431(1)
18.2.19.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Trachoma
431(1)
18.2.20 Yaws
432(1)
18.2.20.1 Treatment for Yaws
432(1)
18.2.20.2 Issues in Prevailing Therapy and Status of Nanomedicine in Treatment of Yaws
432(1)
18.3 Conclusion
432(5)
Acknowledgement
437(1)
References
438(9)
Part 4 Overview of Regulatory Affairs
447(26)
19 Current Framework, Ethical Consideration and Future Challenges of Regulatory Approach for Nano-Based Products
449(24)
Vivek Dave
Srija Sur
Nikita Gupta
List of Abbreviations
449(1)
19.1 Introduction
450(1)
19.2 Issues in Aspect of Regulation of Drug Delivery System
451(1)
19.2.1 Environmental, Health and Safety Risks
451(1)
19.2.2 Ethical, Legal and Social Issues
451(1)
19.3 Regulation of Nano-Based Products in Global Realms of the World
452(6)
19.3.1 United States
453(1)
19.3.1.1 Agency of US Environmental Protection
453(1)
19.3.1.2 United States of Food and Drug Administration
454(1)
19.3.2 United Kingdom
454(1)
19.3.3 European Union (EU)
455(1)
19.3.3.1 Progress of Regulatory Measures in European Union
456(1)
19.3.4 Australia
457(1)
19.3.5 Canada
458(1)
19.3.6 Other Countries
458(1)
19.4 Regulatory Challenges and Solutions in DDS Development
458(11)
19.4.1 Classification
467(1)
19.4.2 Chemistry, Manufacturing and Control
467(1)
19.4.3 Non-Clinical Safety
468(1)
19.4.4 Clinical Studies and Post Marketing Surveillance
468(1)
19.5 Regulatory Education and its Involvement in Pharmaceutical Industry for the Development of Novel Drug Delivery Systems
469(1)
19.6 Current Framework and Future Challenges
469(1)
19.7 Conclusion
470(1)
References
471(2)
Index 473
Vivek Dave gained his PhD in pharmaceutics in 2014 from Banasthali University, Rajasthan. He is an associate professor at the Central University South Bihar, India. His research interests are in formulation and development of novel drug delivery systems like PEGylated liposome, ethosomes. He has published more than 70 research papers and is the recipient of several awards.

Srija Sur recently completed her M.PHARM at Banasthali Vidyapith, India, and is now affiliated to the Department of Pharmacy, Banasthali Vidyapith, Rajasthan. Her research specialization is in the field of pharmaceutics.

Nikita Gupta recently completed her M.PHARM at Banasthali Vidyapit India, and is now affiliated to the Department of Pharmacy, Banasthali Vidyapith, Rajasthan. Her research specialization is in the field of nanopharmaceutics and nanotechnology.