Preface |
|
xi | |
|
|
1 | (100) |
|
1 Electromagnetic fields in uniform media |
|
|
3 | (22) |
|
|
|
1.1 Electromagnetic field equations |
|
|
3 | (6) |
|
1.1.1 Maxwell's equations in medium |
|
|
3 | (3) |
|
|
6 | (1) |
|
1.1.3 Temporal and spatial dispersion |
|
|
7 | (2) |
|
1.2 Local response approximation |
|
|
9 | (8) |
|
1.2.1 Energy of electromagnetic field in medium |
|
|
9 | (1) |
|
1.2.2 Properties of complex dielectric permittivity |
|
|
10 | (2) |
|
1.2.3 Medium response modeling |
|
|
12 | (5) |
|
1.3 Electromagnetic fields in medium |
|
|
17 | (5) |
|
1.3.1 Electromagnetic field generation |
|
|
17 | (1) |
|
|
18 | (1) |
|
1.3.3 Quasi-particle classification |
|
|
18 | (4) |
|
|
22 | (3) |
|
|
22 | (3) |
|
2 Electromagnetic waves in bounded media |
|
|
25 | (22) |
|
|
2.1 Electromagnetic fields in bounded media |
|
|
25 | (4) |
|
2.1.1 Material relations for inhomogeneous media |
|
|
25 | (1) |
|
2.1.2 Electromagnetic fields in inhomogeneous media |
|
|
26 | (2) |
|
2.1.3 Piecewise homogeneous media |
|
|
28 | (1) |
|
|
29 | (5) |
|
2.2.1 Boundary conditions |
|
|
29 | (1) |
|
2.2.2 Bulk eigenfields in real space |
|
|
29 | (3) |
|
2.2.3 Eigenfields of piecewise homogeneous media |
|
|
32 | (2) |
|
2.3 Polaritons of bounded media |
|
|
34 | (11) |
|
2.3.1 Hybridization of bulk polaritons |
|
|
34 | (1) |
|
2.3.2 Polaritons of interface |
|
|
35 | (4) |
|
|
39 | (6) |
|
|
45 | (2) |
|
|
45 | (2) |
|
3 Localized polaritons of single-particle systems |
|
|
47 | (22) |
|
|
|
47 | (4) |
|
3.1.1 Eigenfield quantization |
|
|
47 | (3) |
|
3.1.2 Wavefunctions of polariton eigenfields |
|
|
50 | (1) |
|
3.2 Localized polaritons of planar systems |
|
|
51 | (6) |
|
|
51 | (1) |
|
3.2.2 Planar eigenoscillations |
|
|
52 | (5) |
|
3.3 Localized polaritons of cylindrical systems |
|
|
57 | (4) |
|
3.3.1 Cylindrical eigenfields |
|
|
57 | (1) |
|
3.3.2 Cylindrical eigenoscillations |
|
|
58 | (3) |
|
3.4 Localized polaritons of spherical systems |
|
|
61 | (5) |
|
3.4.1 Spherical eigenfields |
|
|
62 | (1) |
|
3.4.2 Spherical eigenoscillations |
|
|
63 | (3) |
|
|
66 | (3) |
|
|
66 | (3) |
|
4 Localized polaritons of multi-particle systems |
|
|
69 | (32) |
|
|
|
|
|
4.1 Inter-particle polariton hybridization |
|
|
69 | (8) |
|
4.1.1 Capacitive coupling: eigenmode hybridization theory |
|
|
69 | (2) |
|
4.1.2 Conductive coupling: charge-transfer polaritons |
|
|
71 | (2) |
|
4.1.3 Link between capacitive and conductive coupling |
|
|
73 | (4) |
|
4.2 Polariton hybridization effects |
|
|
77 | (9) |
|
4.2.1 Electric and magnetic responses |
|
|
78 | (4) |
|
4.2.2 Directional radiation |
|
|
82 | (1) |
|
|
83 | (2) |
|
4.2.4 Chirality resonances |
|
|
85 | (1) |
|
4.3 Polariton hybridization in complex systems |
|
|
86 | (5) |
|
4.3.1 Image-coupled nanoparticle-on-mirror systems |
|
|
86 | (2) |
|
4.3.2 Metal-dielectric hybrid systems |
|
|
88 | (2) |
|
4.3.3 Periodically ordered particles |
|
|
90 | (1) |
|
|
91 | (10) |
|
|
92 | (9) |
|
II Applications of localized eigenmodes |
|
|
101 | (114) |
|
5 Nanostructural coloration |
|
|
103 | (30) |
|
|
5.1 Introduction and background |
|
|
103 | (3) |
|
5.1.1 Quantification of color |
|
|
105 | (1) |
|
5.2 Coloration by nanostructures |
|
|
106 | (16) |
|
5.2.1 Structural color in nanoparticle arrays |
|
|
107 | (6) |
|
5.2.2 Structural color in nanoaperture arrays |
|
|
113 | (2) |
|
5.2.3 Split-complementary nanostructured reflective color filters |
|
|
115 | (7) |
|
5.3 Emerging materials for structural coloration |
|
|
122 | (3) |
|
|
125 | (8) |
|
|
126 | (7) |
|
6 Nanostructure-enhanced fluorescence emission |
|
|
133 | (18) |
|
|
|
|
6.1 Introduction and background |
|
|
133 | (4) |
|
6.1.1 Application of fluorescent emitters |
|
|
133 | (1) |
|
6.1.2 Types of fluorescent emitters |
|
|
134 | (1) |
|
6.1.3 Enhancement of fluorescence with nanostructures |
|
|
135 | (2) |
|
6.2 Fluorescence emission mechanism |
|
|
137 | (3) |
|
6.2.1 Classical description |
|
|
137 | (1) |
|
6.2.2 Two-photon absorption mechanism |
|
|
138 | (2) |
|
6.3 Enhancement with metal nanostructures |
|
|
140 | (3) |
|
6.3.1 Metal nanoparticles |
|
|
140 | (1) |
|
|
140 | (2) |
|
6.3.3 Modified emission directivity |
|
|
142 | (1) |
|
6.4 Enhancement with dielectric nanostructures |
|
|
143 | (3) |
|
6.4.1 Photonic crystal microcavities |
|
|
144 | (1) |
|
6.4.2 Dielectric nanoantennas |
|
|
144 | (1) |
|
6.4.3 Metal-dielectric hybrid structures |
|
|
145 | (1) |
|
|
146 | (5) |
|
|
147 | (4) |
|
|
151 | (24) |
|
|
|
|
|
1.1 Introduction and background |
|
|
151 | (4) |
|
7.1.1 History of chiroptics |
|
|
151 | (1) |
|
7.1.2 Natural optical activity |
|
|
152 | (2) |
|
7.1.3 Chiroptical effects |
|
|
154 | (1) |
|
7.2 Flat chiral nanostructures |
|
|
155 | (12) |
|
7.2.1 Single-layer chiral systems |
|
|
155 | (6) |
|
7.2.2 Multi-layer chiral systems |
|
|
161 | (6) |
|
7.3 Biosensing with flat chiral systems |
|
|
167 | (4) |
|
|
167 | (1) |
|
|
167 | (2) |
|
7.3.3 Effects of superchiral fields |
|
|
169 | (2) |
|
|
171 | (4) |
|
|
171 | (4) |
|
8 Localized polariton-based sensors |
|
|
175 | (24) |
|
|
|
|
|
|
|
175 | (1) |
|
|
176 | (7) |
|
|
176 | (2) |
|
8.2.2 Periodic nanostructures |
|
|
178 | (5) |
|
8.3 Light illumination effects |
|
|
183 | (4) |
|
8.3.1 Front and rear illumination |
|
|
184 | (2) |
|
8.3.2 Oblique illumination |
|
|
186 | (1) |
|
8.4 Effects of nanostructure materials |
|
|
187 | (2) |
|
8.5 Nanochip fabrication and characterization |
|
|
189 | (4) |
|
8.6 Point-of-care sensing systems |
|
|
193 | (4) |
|
8.6.1 System configuration |
|
|
194 | (1) |
|
8.6.2 System characterization |
|
|
195 | (2) |
|
|
197 | (2) |
|
|
197 | (2) |
|
9 Metasurfaces for flat optics |
|
|
199 | (16) |
|
|
9.1 Introduction and background |
|
|
199 | (2) |
|
9.1.1 History of metasurface development |
|
|
199 | (1) |
|
9.1.2 Generalized Snell's law |
|
|
200 | (1) |
|
|
201 | (8) |
|
9.2.1 Metasurfaces using rods as meta-atoms |
|
|
202 | (2) |
|
9.2.2 Metasurfaces using V-shaped meta-atoms |
|
|
204 | (3) |
|
9.2.3 Metasurfaces with other meta-atom shapes |
|
|
207 | (1) |
|
9.2.4 Material selections for metasurfaces |
|
|
208 | (1) |
|
|
209 | (6) |
|
|
211 | (4) |
|
III Applications of propagating eigenmodes |
|
|
215 | (130) |
|
10 Guiding light with resonant nanoparticles |
|
|
219 | (16) |
|
|
|
10.1 Introduction and background |
|
|
219 | (5) |
|
10.1.1 Guiding light with coupled nanoparticles |
|
|
220 | (4) |
|
10.2 Design considerations for on-chip integration |
|
|
224 | (2) |
|
10.3 Nanocoupler for chain waveguide |
|
|
226 | (3) |
|
|
226 | (1) |
|
|
227 | (2) |
|
10.4 Nanoparticle bend chain |
|
|
229 | (2) |
|
|
231 | (4) |
|
|
231 | (4) |
|
11 Sub-wavelength slot waveguides |
|
|
235 | (22) |
|
|
|
235 | (1) |
|
11.2 Overview of sub-wavelength waveguides |
|
|
236 | (4) |
|
11.3 Metal-nanoparticle double-chain waveguide |
|
|
240 | (5) |
|
11.3.1 Waveguide specifications |
|
|
240 | (1) |
|
11.3.2 Operation characteristics |
|
|
240 | (5) |
|
11.4 Sub-wavelength slab-slot waveguides |
|
|
245 | (7) |
|
11.4.1 Waveguide specifications |
|
|
245 | (2) |
|
11.4.2 Operation characteristics |
|
|
247 | (5) |
|
|
252 | (5) |
|
|
252 | (5) |
|
|
257 | (18) |
|
|
|
|
12.1 Introduction and background |
|
|
257 | (1) |
|
12.2 Semiconductor-based photodetectors |
|
|
258 | (4) |
|
12.2.1 InxGa1-xAs photodetectors |
|
|
258 | (1) |
|
12.2.2 Ge-on-Si photodetectors |
|
|
259 | (2) |
|
12.2.3 All-Si photodetectors |
|
|
261 | (1) |
|
12.3 Photodetectors based on low-dimensional materials |
|
|
262 | (3) |
|
12.3.1 Graphene-based photodetectors |
|
|
262 | (1) |
|
12.3.2 Carbon nanotube-based photodetectors |
|
|
263 | (2) |
|
12.4 Metal-based photodetectors |
|
|
265 | (4) |
|
12.4.1 Electrode surface polaritons |
|
|
265 | (2) |
|
12.4.2 Metal antenna-based photodetectors |
|
|
267 | (1) |
|
12.4.3 Photodetectors without semiconductors |
|
|
268 | (1) |
|
|
269 | (6) |
|
|
270 | (5) |
|
13 Integrated nonlinear photonics |
|
|
275 | (30) |
|
|
13.1 Introduction and background |
|
|
275 | (6) |
|
|
276 | (3) |
|
13.1.2 Material platforms and properties |
|
|
279 | (2) |
|
13.2 Integrated nonlinear silicon photonics |
|
|
281 | (8) |
|
13.2.1 Overview and challenges |
|
|
281 | (3) |
|
13.2.2 Application of nonlinearities |
|
|
284 | (2) |
|
13.2.3 Engineering waveguide structures for nonlinear photonics |
|
|
286 | (3) |
|
13.3 Integrated nonlinear quantum photonics |
|
|
289 | (3) |
|
13.3.1 Photon pair generation via nonlinear silicon photonics |
|
|
290 | (1) |
|
13.3.2 Experiments using entangled photon pairs |
|
|
291 | (1) |
|
13.3.3 Quantum frequency conversion |
|
|
291 | (1) |
|
|
292 | (13) |
|
|
293 | (12) |
|
14 Integrated nanophotonics for multi-user quantum key distribution networks |
|
|
305 | (40) |
|
|
|
14.1 Introduction and background |
|
|
305 | (3) |
|
14.1.1 Significance of QKD |
|
|
306 | (1) |
|
|
307 | (1) |
|
14.2 Multi-user QKD network |
|
|
308 | (4) |
|
14.2.1 Backbone QKD links |
|
|
308 | (2) |
|
14.2.2 QKD access networks |
|
|
310 | (2) |
|
14.3 Wavelength-multiplexed entanglement-based QKD |
|
|
312 | (5) |
|
14.3.1 Prepare-and-measure QKD |
|
|
312 | (1) |
|
14.3.2 Entanglement-based QKD |
|
|
312 | (1) |
|
14.3.3 Entanglement distribution in a network |
|
|
313 | (2) |
|
14.3.4 Wavelength-multiplexed entanglement distribution |
|
|
315 | (2) |
|
14.4 Integrated nanophotonics for QKD applications |
|
|
317 | (12) |
|
14.4.1 Ideal single-photon source and weak coherent source |
|
|
317 | (1) |
|
14.4.2 On-chip entangled photon generation |
|
|
317 | (7) |
|
14.4.3 On-chip photon detection |
|
|
324 | (1) |
|
14.4.4 On-chip photon wavelength demultiplexing |
|
|
325 | (1) |
|
14.4.5 Toward fully monolithic integration |
|
|
326 | (3) |
|
|
329 | (16) |
|
|
330 | (15) |
Index |
|
345 | |