1 Nanoscale Materials in Targeted Drug Delivery |
|
1 | (20) |
|
|
|
|
|
|
|
|
2 | (1) |
|
1.2 Approaches for Synthesis of Nanoscale Materials |
|
|
3 | (1) |
|
1.3 Characterisation of Nanoscale Materials |
|
|
4 | (1) |
|
1.4 Types of Nanoscale Materials |
|
|
5 | (2) |
|
1.5 Targeted Drug Delivery |
|
|
7 | (4) |
|
1.6 Various Nanoscale Materials in Drug Delivery |
|
|
11 | (3) |
|
1.6.1 Polymeric Nanoparticles |
|
|
11 | (1) |
|
1.6.2 Metallic Nanoparticles |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
1.6.8 Magnetic Nanoparticles |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (6) |
2 Biodegradable Nanoparticles and Their In Vivo Fate |
|
21 | (20) |
|
|
|
|
|
|
22 | (2) |
|
2.2 Synthesis of Biodegradable Nanoparticles |
|
|
24 | (2) |
|
2.2.1 Synthesis of PLGA and PLA Nanoparticles |
|
|
24 | (1) |
|
2.2.2 Synthesis of Chitosan Nanoparticles |
|
|
25 | (1) |
|
2.2.3 Synthesis of Protein Nanoparticles |
|
|
25 | (1) |
|
2.3 Biodegradable Nanoparticles for Drug Delivery |
|
|
26 | (3) |
|
2.3.1 Biodegradable Nanoparticles for Delivery of Anticancer Drugs |
|
|
26 | (2) |
|
2.3.2 Biodegradable Nanoparticles for Delivery of Psychotic Drugs |
|
|
28 | (1) |
|
2.3.3 Biodegradable Nanoparticles for Delivery of Antimicrobial Drugs |
|
|
28 | (1) |
|
2.3.4 Biodegradable Nanoparticles for Delivery of Hepatoprotective Drugs |
|
|
29 | (1) |
|
2.3.5 Biodegradable Nanoparticles for Proteins, Peptides and Nucleic Acids Delivery |
|
|
29 | (1) |
|
2.4 Drug Release Mechanisms from Biodegradable Nanoparticles |
|
|
29 | (2) |
|
2.5 Targeted Drug Delivery Using Biodegradable Nanoparticles |
|
|
31 | (1) |
|
2.6 Biological Barriers Encountered by Biodegradable NPs |
|
|
32 | (1) |
|
2.7 In Vivo Fate of Biodegradable Nanoparticles |
|
|
33 | (1) |
|
2.8 Toxicity of Biodegradable Nanoparticles |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
35 | (6) |
3 Metallic Nanoparticles, Toxicity Issues and Applications in Medicine |
|
41 | (40) |
|
|
|
|
|
|
42 | (1) |
|
3.2 Physico-Chemical Properties of Metal and Metal Oxide NPs |
|
|
43 | (1) |
|
3.3 Synthesis of Metal and Metal Oxide NPs |
|
|
44 | (11) |
|
3.3.1 Electrochemical Synthesis |
|
|
45 | (1) |
|
3.3.2 Sonochemical Method |
|
|
46 | (1) |
|
3.3.3 Thermal Decomposition |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
49 | (2) |
|
|
51 | (1) |
|
|
51 | (1) |
|
3.3.8 Biological Synthesis |
|
|
52 | (3) |
|
3.4 Effect of Shape, Size and Surface Chemistry of NPs on Their Properties and Biological Behaviour |
|
|
55 | (1) |
|
3.5 Medical Prospects of Metallic Nanoparticles |
|
|
55 | (14) |
|
3.5.1 Disease Diagnostics |
|
|
56 | (3) |
|
|
59 | (7) |
|
|
66 | (1) |
|
3.5.4 Wound Healing and Skin Repair |
|
|
67 | (1) |
|
|
68 | (1) |
|
3.6 Toxicity Issues Related to the Use of Nanomaterials |
|
|
69 | (2) |
|
|
71 | (1) |
|
|
71 | (10) |
4 Liposomal and Phytosomal Formulations |
|
81 | (22) |
|
|
|
|
|
|
82 | (1) |
|
|
83 | (1) |
|
4.2.1 Liposomes Based on Drug Delivery Systems |
|
|
83 | (1) |
|
4.2.2 Liposomes Based on Structural Parameters |
|
|
84 | (1) |
|
4.3 Methods of Preparation of Liposomes |
|
|
84 | (4) |
|
4.3.1 Passive Drug Loading/Encapsulation |
|
|
85 | (3) |
|
4.3.2 Active Drug Loading/Encapsulation |
|
|
88 | (1) |
|
4.4 Methods of Preparation of Phytosomes |
|
|
88 | (1) |
|
4.4.1 Supercritical Fluids |
|
|
88 | (1) |
|
4.4.2 Solvent Evaporation |
|
|
88 | (1) |
|
4.4.3 Antisolvent Precipitation Technique |
|
|
89 | (1) |
|
4.5 Mechanism of Liposome and Phytosome Formation |
|
|
89 | (1) |
|
4.6 PhysicoChemical Characterisation of Liposomal and Phytosomal Formulations |
|
|
89 | (2) |
|
4.7 Surface Modifications of Liposomes and Phytosomes |
|
|
91 | (1) |
|
4.8 Targeting Mechanism of Liposomes and Phytosomes |
|
|
91 | (2) |
|
|
91 | (1) |
|
|
92 | (1) |
|
4.9 Medical Applications of Liposomes and Phytosomes |
|
|
93 | (4) |
|
4.9.1 Diagnostics and Imaging |
|
|
93 | (1) |
|
|
94 | (1) |
|
4.9.3 Tissue Regeneration |
|
|
95 | (2) |
|
4.9.3 Antimicrobial Activity |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
98 | (5) |
5 Nanocellulose and Nanocomposites |
|
103 | (24) |
|
|
|
|
|
|
104 | (1) |
|
5.2 Structure and Morphology of Cellulose |
|
|
105 | (1) |
|
|
106 | (1) |
|
5.4 Types of Nanocellulose |
|
|
106 | (2) |
|
5.4.1 Microfibrillated Cellulose (MFCs) |
|
|
106 | (2) |
|
5.4.2 Cellulose Nanocrystals (CNCs) |
|
|
108 | (1) |
|
5.4.3 Bacterial Nanocellulose (BNCs) |
|
|
108 | (1) |
|
5.5 Preparation Methodologies of Nanocellulose |
|
|
108 | (3) |
|
|
108 | (1) |
|
|
109 | (1) |
|
5.5.3 Mechanical Treatment |
|
|
110 | (1) |
|
5.5.4 Combined Chemical and Mechanical Approach |
|
|
111 | (1) |
|
5.6 Multiscale Characterizations |
|
|
111 | (1) |
|
5.7 Physicochemical Properties |
|
|
112 | (1) |
|
5.8 Factors Affecting Nanocellulose |
|
|
113 | (1) |
|
5.9 Surface Chemical Modifications |
|
|
114 | (2) |
|
5.9.1 Non-covalent Surface Modification |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
116 | (1) |
|
5.10 Nanocomposites Formation |
|
|
116 | (1) |
|
5.11 Applications of Nanocellulose and Nanocomposites in Biomedical |
|
|
117 | (4) |
|
|
117 | (1) |
|
|
117 | (2) |
|
5.11.3 Tissue Engineering |
|
|
119 | (1) |
|
|
120 | (1) |
|
5.11.5 Antimicrobial Activity |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
121 | (6) |
6 Theragnosis: Nanoparticles as a Tool for Simultaneous Therapy and Diagnosis |
|
127 | (26) |
|
|
|
|
128 | (1) |
|
6.2 Nanomaterials in Disease Diagnosis and Therapy |
|
|
129 | (4) |
|
6.2.1 Metallic Nanoparticles |
|
|
130 | (1) |
|
|
130 | (1) |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
132 | (1) |
|
|
132 | (1) |
|
6.3 Different Imaging Modalities |
|
|
133 | (3) |
|
6.3.1 Optical Imaging Systems |
|
|
133 | (1) |
|
6.3.2 Magnetic Resonance Imaging (MRI) |
|
|
134 | (1) |
|
6.3.3 Computed Tomography (CT) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
135 | (1) |
|
6.4 Hybrid Imaging Modalities |
|
|
136 | (2) |
|
6.4.1 Optical Imaging/MRI |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
139 | (1) |
|
|
139 | (1) |
|
6.6 Nanoparticles as Theragnostic Probes |
|
|
139 | (3) |
|
6.6.1 Chemotherapy Via Theragnostic Nanotechnology |
|
|
140 | (1) |
|
6.6.2 Photodyanamic Therapy |
|
|
140 | (1) |
|
6.6.3 Photothermal Therapy |
|
|
141 | (1) |
|
6.6.4 Hyperthermia Therapy |
|
|
141 | (1) |
|
6.7 Factors Affecting Disease Diagnosis and Therapy |
|
|
142 | (2) |
|
6.7.1 Biopersistence of NPs |
|
|
142 | (1) |
|
|
142 | (1) |
|
6.7.3 Target Specificity of Theragnostic NPs |
|
|
143 | (1) |
|
6.7.4 In Vivo Clearance of NPs |
|
|
143 | (1) |
|
|
144 | (1) |
|
6.8 Current Scenario and Future Aspects |
|
|
144 | (2) |
|
|
146 | (1) |
|
|
146 | (7) |
7 Cellular Response of Therapeutic Nanoparticles |
|
153 | (14) |
|
|
|
|
|
|
|
154 | (1) |
|
7.2 Pathways for Cellular Uptake of Nanoparticles |
|
|
155 | (1) |
|
7.3 Monitoring Endocytic Pathways |
|
|
156 | (1) |
|
7.4 Factors Affecting Cellular Response of Nanoparticles |
|
|
157 | (2) |
|
7.5 Cellular Response of Therapeutic Nanoparticles |
|
|
159 | (2) |
|
7.5.1 Metallic Nanoparticles |
|
|
159 | (1) |
|
7.5.2 Silica Nanoparticles |
|
|
160 | (1) |
|
7.5.3 Polymeric Nanoparticles |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
7.6 Protein Corona Formation on Therapeutic Nanoparticles |
|
|
161 | (1) |
|
7.7 Characterisation of Protein Corona on Nanoparticles |
|
|
162 | (3) |
|
7.7.1 Fourier Transform Infrared Spectroscopy (FTIR) |
|
|
163 | (1) |
|
|
163 | (1) |
|
7.7.3 Fluorescence Correlation Spectroscopy |
|
|
163 | (1) |
|
7.7.4 Differential Centrifugal Sedimentation |
|
|
163 | (1) |
|
7.7.5 Isothermal Titration Calorimetry |
|
|
163 | (1) |
|
7.7.6 Liquid Chromatography-Mass Spectrometry |
|
|
164 | (1) |
|
7.7.7 Matrix-Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometer (MALDI-TOF MS) |
|
|
164 | (1) |
|
|
164 | (1) |
|
7.7.9 Size Exclusion Chromatography |
|
|
165 | (1) |
|
7.7.10 Dynamic Light Scattering |
|
|
165 | (1) |
|
7.7.11 Bioinformatic Tools |
|
|
165 | (1) |
|
7.8 Properties of NPs Affecting Protein Corona Formation |
|
|
165 | (2) |
|
|
167 | (1) |
References |
|
167 | |