Muutke küpsiste eelistusi

E-raamat: Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration

  • Formaat: PDF+DRM
  • Ilmumisaeg: 04-Jun-2016
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811008184
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 04-Jun-2016
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811008184

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book discusses the use of nanoscale materials for biomedical applications, with a special emphasis on drug delivery, theragnosis and tissue regeneration, and describes in detail the methods used in the preparation of nanoparticles. 

Nanotechnology has led to the advent of a new field, nanomedicine, which focuses on the use of materials at nanoscale as drug delivery vehicles to develop highly selective and effective drugs. The combination of molecular imaging and nanotechnology has produced theragnostic nanoparticles, which allow the simultaneous detection and monitoring of diseases. Nanotechnology can also be combined with biomaterials to create scaffolds for tissue regeneration. Further, significant advances have been made in the areas of drug delivery, theragnostic nanoparticles and tissue regeneration materials. Some nanomedicines and tissue regeneration materials are already commercially available, while others are undergoing clinical trials, and promising results have already been documented.

Despite the rapid advances in nanomedicine, there is a relative dearth of literature on the biomedical applications of nanoscale materials. This book is the first to offer a comprehensive and up-to-date resource on innovations in drug delivery, theragnosis and tissue engineering.

1 Nanoscale Materials in Targeted Drug Delivery 1(20)
Avnesh Kumari
Rubbel Singla
Anika Guliani
Shanka Walia
Amitabha Acharya
Sudesh Kumar Yadav
1.1 Introduction
2(1)
1.2 Approaches for Synthesis of Nanoscale Materials
3(1)
1.3 Characterisation of Nanoscale Materials
4(1)
1.4 Types of Nanoscale Materials
5(2)
1.5 Targeted Drug Delivery
7(4)
1.6 Various Nanoscale Materials in Drug Delivery
11(3)
1.6.1 Polymeric Nanoparticles
11(1)
1.6.2 Metallic Nanoparticles
11(1)
1.6.3 Liposomes
11(1)
1.6.4 Quantum Dots
11(1)
1.6.5 Polymeric Micelles
12(1)
1.6.6 Carbon Nanotubes
13(1)
1.6.7 Dendrimers
13(1)
1.6.8 Magnetic Nanoparticles
14(1)
1.7 Conclusions
14(1)
References
15(6)
2 Biodegradable Nanoparticles and Their In Vivo Fate 21(20)
Avnesh Kumari
Rubbel Singla
Anika Guliani
Sudesh Kumar Yadav
2.1 Introduction
22(2)
2.2 Synthesis of Biodegradable Nanoparticles
24(2)
2.2.1 Synthesis of PLGA and PLA Nanoparticles
24(1)
2.2.2 Synthesis of Chitosan Nanoparticles
25(1)
2.2.3 Synthesis of Protein Nanoparticles
25(1)
2.3 Biodegradable Nanoparticles for Drug Delivery
26(3)
2.3.1 Biodegradable Nanoparticles for Delivery of Anticancer Drugs
26(2)
2.3.2 Biodegradable Nanoparticles for Delivery of Psychotic Drugs
28(1)
2.3.3 Biodegradable Nanoparticles for Delivery of Antimicrobial Drugs
28(1)
2.3.4 Biodegradable Nanoparticles for Delivery of Hepatoprotective Drugs
29(1)
2.3.5 Biodegradable Nanoparticles for Proteins, Peptides and Nucleic Acids Delivery
29(1)
2.4 Drug Release Mechanisms from Biodegradable Nanoparticles
29(2)
2.5 Targeted Drug Delivery Using Biodegradable Nanoparticles
31(1)
2.6 Biological Barriers Encountered by Biodegradable NPs
32(1)
2.7 In Vivo Fate of Biodegradable Nanoparticles
33(1)
2.8 Toxicity of Biodegradable Nanoparticles
34(1)
2.9 Conclusions
35(1)
References
35(6)
3 Metallic Nanoparticles, Toxicity Issues and Applications in Medicine 41(40)
Rubbel Singla
Anika Guliani
Avnesh Kumari
Sudesh Kumar Yadav
3.1 Introduction
42(1)
3.2 Physico-Chemical Properties of Metal and Metal Oxide NPs
43(1)
3.3 Synthesis of Metal and Metal Oxide NPs
44(11)
3.3.1 Electrochemical Synthesis
45(1)
3.3.2 Sonochemical Method
46(1)
3.3.3 Thermal Decomposition
47(1)
3.3.4 Laser Ablation
48(1)
3.3.5 Chemical Reduction
49(2)
3.3.6 Polyol Method
51(1)
3.3.7 Microemulsion
51(1)
3.3.8 Biological Synthesis
52(3)
3.4 Effect of Shape, Size and Surface Chemistry of NPs on Their Properties and Biological Behaviour
55(1)
3.5 Medical Prospects of Metallic Nanoparticles
55(14)
3.5.1 Disease Diagnostics
56(3)
3.5.2 Disease Therapy
59(7)
3.5.3 Tissue Engineering
66(1)
3.5.4 Wound Healing and Skin Repair
67(1)
3.5.5 Theranostics
68(1)
3.6 Toxicity Issues Related to the Use of Nanomaterials
69(2)
3.7 Conclusions
71(1)
References
71(10)
4 Liposomal and Phytosomal Formulations 81(22)
Anika Guliani
Rubbel Singla
Avnesh Kumari
Sudesh Kumar Yadav
4.1 Introduction
82(1)
4.2 Types of Liposomes
83(1)
4.2.1 Liposomes Based on Drug Delivery Systems
83(1)
4.2.2 Liposomes Based on Structural Parameters
84(1)
4.3 Methods of Preparation of Liposomes
84(4)
4.3.1 Passive Drug Loading/Encapsulation
85(3)
4.3.2 Active Drug Loading/Encapsulation
88(1)
4.4 Methods of Preparation of Phytosomes
88(1)
4.4.1 Supercritical Fluids
88(1)
4.4.2 Solvent Evaporation
88(1)
4.4.3 Antisolvent Precipitation Technique
89(1)
4.5 Mechanism of Liposome and Phytosome Formation
89(1)
4.6 PhysicoChemical Characterisation of Liposomal and Phytosomal Formulations
89(2)
4.7 Surface Modifications of Liposomes and Phytosomes
91(1)
4.8 Targeting Mechanism of Liposomes and Phytosomes
91(2)
4.8.1 Active Targeting
91(1)
4.8.2 Passive Targeting
92(1)
4.9 Medical Applications of Liposomes and Phytosomes
93(4)
4.9.1 Diagnostics and Imaging
93(1)
4.9.2 Drug Delivery
94(1)
4.9.3 Tissue Regeneration
95(2)
4.9.3 Antimicrobial Activity
97(1)
4.10 Conclusions
97(1)
References
98(5)
5 Nanocellulose and Nanocomposites 103(24)
Rubbel Singla
Anika Guliani
Avnesh Kumari
Sudesh Kumar Yadav
5.1 Introduction
104(1)
5.2 Structure and Morphology of Cellulose
105(1)
5.3 Sources of Cellulose
106(1)
5.4 Types of Nanocellulose
106(2)
5.4.1 Microfibrillated Cellulose (MFCs)
106(2)
5.4.2 Cellulose Nanocrystals (CNCs)
108(1)
5.4.3 Bacterial Nanocellulose (BNCs)
108(1)
5.5 Preparation Methodologies of Nanocellulose
108(3)
5.5.1 Pretreatment
108(1)
5.5.2 Acid Hydrolysis
109(1)
5.5.3 Mechanical Treatment
110(1)
5.5.4 Combined Chemical and Mechanical Approach
111(1)
5.6 Multiscale Characterizations
111(1)
5.7 Physicochemical Properties
112(1)
5.8 Factors Affecting Nanocellulose
113(1)
5.9 Surface Chemical Modifications
114(2)
5.9.1 Non-covalent Surface Modification
115(1)
5.9.2 Silylation
115(1)
5.9.3 Acetylation
115(1)
5.9.4 Oxidation
116(1)
5.9.5 Polymer Grafting
116(1)
5.10 Nanocomposites Formation
116(1)
5.11 Applications of Nanocellulose and Nanocomposites in Biomedical
117(4)
5.11.1 Diagnostics
117(1)
5.11.2 Drug Delivery
117(2)
5.11.3 Tissue Engineering
119(1)
5.11.4 Wound Repair
120(1)
5.11.5 Antimicrobial Activity
120(1)
5.12 Conclusions
121(1)
References
121(6)
6 Theragnosis: Nanoparticles as a Tool for Simultaneous Therapy and Diagnosis 127(26)
Shanka Walia
Amitabha Acharya
6.1 Introduction
128(1)
6.2 Nanomaterials in Disease Diagnosis and Therapy
129(4)
6.2.1 Metallic Nanoparticles
130(1)
6.2.2 Quantum Dots
130(1)
6.2.3 Silica NPs
131(1)
6.2.4 Carbon Nanotubes
131(1)
6.2.5 Dendrimers
132(1)
6.2.6 Micelles
132(1)
6.2.7 Liposomes
132(1)
6.3 Different Imaging Modalities
133(3)
6.3.1 Optical Imaging Systems
133(1)
6.3.2 Magnetic Resonance Imaging (MRI)
134(1)
6.3.3 Computed Tomography (CT)
134(1)
6.3.4 Ultrasound (US)
135(1)
6.3.5 Nuclear Imaging
135(1)
6.4 Hybrid Imaging Modalities
136(2)
6.4.1 Optical Imaging/MRI
136(1)
6.4.2 MR-PET/SPECT
137(1)
6.4.3 CT/MRI
137(1)
6.4.4 PET/NIRF
138(1)
6.4.5 SPECT/NIRF
138(1)
6.5 Trimodal Imaging
138(1)
6.5.1 CT/MR/Optical
139(1)
6.5.2 PET/MR/Optical
139(1)
6.5.3 SPECT/MR/Optical
139(1)
6.6 Nanoparticles as Theragnostic Probes
139(3)
6.6.1 Chemotherapy Via Theragnostic Nanotechnology
140(1)
6.6.2 Photodyanamic Therapy
140(1)
6.6.3 Photothermal Therapy
141(1)
6.6.4 Hyperthermia Therapy
141(1)
6.7 Factors Affecting Disease Diagnosis and Therapy
142(2)
6.7.1 Biopersistence of NPs
142(1)
6.7.2 Efficacy of NPs
142(1)
6.7.3 Target Specificity of Theragnostic NPs
143(1)
6.7.4 In Vivo Clearance of NPs
143(1)
6.7.5 Nanotoxicity
144(1)
6.8 Current Scenario and Future Aspects
144(2)
6.9 Conclusion
146(1)
References
146(7)
7 Cellular Response of Therapeutic Nanoparticles 153(14)
Avnesh Kumari
Rubbel Singla
Anika Guliani
Amitabha Acharya
Sudesh Kumar Yadav
7.1 Introduction
154(1)
7.2 Pathways for Cellular Uptake of Nanoparticles
155(1)
7.3 Monitoring Endocytic Pathways
156(1)
7.4 Factors Affecting Cellular Response of Nanoparticles
157(2)
7.5 Cellular Response of Therapeutic Nanoparticles
159(2)
7.5.1 Metallic Nanoparticles
159(1)
7.5.2 Silica Nanoparticles
160(1)
7.5.3 Polymeric Nanoparticles
160(1)
7.5.4 Quantum Dots
160(1)
7.5.5 Liposomes
160(1)
7.6 Protein Corona Formation on Therapeutic Nanoparticles
161(1)
7.7 Characterisation of Protein Corona on Nanoparticles
162(3)
7.7.1 Fourier Transform Infrared Spectroscopy (FTIR)
163(1)
7.7.2 Raman Spectroscopy
163(1)
7.7.3 Fluorescence Correlation Spectroscopy
163(1)
7.7.4 Differential Centrifugal Sedimentation
163(1)
7.7.5 Isothermal Titration Calorimetry
163(1)
7.7.6 Liquid Chromatography-Mass Spectrometry
164(1)
7.7.7 Matrix-Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometer (MALDI-TOF MS)
164(1)
7.7.8 Electrophoresis
164(1)
7.7.9 Size Exclusion Chromatography
165(1)
7.7.10 Dynamic Light Scattering
165(1)
7.7.11 Bioinformatic Tools
165(1)
7.8 Properties of NPs Affecting Protein Corona Formation
165(2)
7.9 Conclusions
167(1)
References 167
Dr. Sudesh Kumar Yadav (DOB: 02-01-1976; POB: Bhiwani, Haryana) obtained his MSc in 1999 and PhD in 2002 from the Department of Biochemistry, CCS Haryana Agricultural University, Hisar. Subsequently, he worked as post-doctoral fellow at ICGEB, New Delhi (2002-2004). He joined CSIR-Institute of Himalayan Bioresource Technology, Palampur in 2004 and presently working there as principal scientist. Under his guidance, six students have obtained their PhD degrees. He has been working in the area of plant metabolic engineering and nanobiology.  In the plant metabolic engineering area, he has significantly contributed through his research towards understanding the caffeine metabolism in tea and reducing its caffeine levels through gene silencing. Also, flavonoid biosynthetic pathway genes from tea were explored in raising transgenic tobacco plants with improved flavonoid and antioxidants potential. His research work has provided the evidence to the production of low-seeded fruits through decreasing flavonols level by silencing of flavonol synthase. Currently, his focus is on understanding epigenetic regulation and role of small RNAs in the metabolic processes of plants. In nanobiology, his main work is on the exploration of plants for the synthesis of noble metallic nanoparticles and characterizing their phytochemicals involved therein. Such nanoparticles are very useful in various agricultural, medical and food applications. Secondly, he has been working towards improving the solubility, bioavailability and efficacy of important phytomolecules possessing activities like antioxidant, antimicrobial and anticancer.He has published more than 100 research articles in peer reviewed journals and 10 book chapters so far. For his outstanding research contributions in the area of plant sciences, he has been honoured with many prestigious awards; Indian National Science Academy (INSA)-Young Scientist Award-2008, The National Academy of Science, India(NASI)-Platinum Jubilee Young Scientist Award-2009, Council of Scientific and Industrial Research (CSIR)-Young Scientist Award-2010. He has been awarded BOYSCAST Fellowship during 2008 by DST, GOI for conducting advanced research at UCR, Riverside, USA for one year. He has been also selected NAAS-Associate by the National Academy of Agricultural Sciences from 2013 and conferred Prof. Hira Lal Chakravarty Memorial Award of Indian Science Congress Association (ISCA) for the year 2012-2013 during 100th Session of Indian Science Congress at Kolkata. Adding another feather to his achievements, he has now been selected by Haryana State Council for Science and Technology, Department of Science and Technology, Govt. of Haryana for the Haryana Yuva Vigyan Ratna Award 2011-12 for his excellent research contributions.