Muutke küpsiste eelistusi

E-raamat: Nanotechnology: The Whole Story

(NevadaNano, Sparks, USA), (University of California, Santa Barbara, USA), (NevadaNano, Sparks, USA)
  • Formaat: 395 pages
  • Ilmumisaeg: 20-Mar-2013
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781466502109
  • Formaat - PDF+DRM
  • Hind: 143,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 395 pages
  • Ilmumisaeg: 20-Mar-2013
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781466502109

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Winner of an Outstanding Academic Title Award from CHOICE MagazineTransistors using one electron at a time. Seemingly transparent sunscreens made with titanium dioxide particles that block harmful UV rays. Nanometer-sized specks of gold that change color to red and melt at 750°C instead of 1,064°C. Nanotechnology finds the unique properties of things at the nanometer scale and then puts them to use!

Although nanotechnology is a hot topic with a wide range of fascinating applications, the search for a true introductory popular resource usually comes up cold. Closer to a popular science book than a high-level treatise, Nanotechnology: The Whole Story works from the ground up to provide a detailed yet accessible introduction to one of the worlds fastest growing fields.

Dive headlong into nanotechnology! Tackling the eight main disciplinesnanomaterials, nanomechanics, nanoelectronics, nanoscale heat transfer, nanophotonics, nanoscale fluid mechanics, nanobiotechnology, and nanomedicinethis book explains whats different at the nanoscale, and how we exploit those differences to make useful things. Youre holding the key to an exciting and rapidly evolving field.

So get The Whole Story

Arvustused

"an excellent resource for anyone interested in nanotechnology. Summing Up: Highly recommended. Students of all levels, researchers/faculty, and professionals." H Giesche, Alfred University, in CHOICE

Preface xiii
Acknowledgments xv
An Invitation xvi
Authors xvii
1 Big Picture of the Small World
1(28)
1.1 Understanding the Atom: Ex Nihilo Nihil Fit
3(8)
1.2 Nanotechnology Starts with a Dare: Feynman's Big Little Challenges
11(4)
1.3 Why One-Billionth of a Meter Is a Big Deal
15(3)
1.4 Thinking It Through: The Broad Implications of Nanotechnology
18(7)
1.4.1 Gray Goo
21(1)
1.4.2 Environmental Impact
21(2)
1.4.3 The Written Word
23(2)
1.5 The Business of Nanotech: Plenty of Room at the Bottom Line, Too
25(2)
1.5.1 Products
27(1)
Recommendations for Further Reading
27(2)
2 Introduction to Miniaturization
29(18)
2.1 Background: The Smaller, the Better
29(1)
2.2 Scaling Laws
30(14)
2.2.1 The Elephant and the Flea
30(4)
2.2.2 Scaling in Mechanics
34(3)
2.2.3 Scaling in Electricity and Electromagnetism
37(1)
2.2.4 Scaling in Optics
38(3)
2.2.5 Scaling in Heat Transfer
41(1)
2.2.6 Scaling in Fluids
42(1)
2.2.7 Scaling in Biology
43(1)
2.3 Accuracy of the Scaling Laws
44(2)
Recommendations for Further Reading
46(1)
3 Introduction to Nanoscale Physics
47(32)
3.1 Background: Newton Never Saw a Nanotube
47(1)
3.2 One Hundred Hours and Eight Minutes of Nanoscale Physics
47(1)
3.3 The Basics of Quantum Mechanics
48(28)
3.3.1 Atomic Orbitals (Not Orbits)
49(3)
3.3.2 Electromagnetic Waves
52(4)
3.3.2.1 How Electromagnetic Waves Are Made
56(1)
3.3.3 The Quantization of Energy
57(4)
3.3.4 Atomic Spectra and Discreteness
61(1)
3.3.5 The Photoelectric Effect
61(5)
3.3.6 Wave-Particle Duality: The Double-Slit Experiment
66(1)
3.3.6.1 Bullets
67(1)
3.3.6.2 Water Waves
68(1)
3.3.6.3 Electrons
69(2)
3.3.7 The Uncertainty Principle
71(2)
3.3.8 Particle in a Well
73(3)
3.4 Summary
76(1)
Recommendations for Further Reading
77(2)
4 Nanomaterials
79(42)
4.1 Background: Matter Matters
79(1)
4.2 Bonding Atoms to Make Molecules and Solids
79(11)
4.2.1 Ionic Bonding
81(2)
4.2.2 Covalent Bonding
83(1)
4.2.3 Metallic Bonding
84(1)
4.2.4 Walking through Waals: van der Waals Forces
84(2)
4.2.4.1 The Dispersion Force
86(1)
4.2.4.2 Repulsive Forces
87(1)
4.2.4.3 van der Waals Force versus Gravity
88(2)
4.3 Crystal Structures
90(2)
4.4 Structures Small Enough to Be Different (and Useful)
92(26)
4.4.1 Particles
93(5)
4.4.1.1 Colloidal Particles
98(1)
4.4.2 Wires
98(2)
4.4.3 Films, Layers, and Coatings
100(3)
4.4.4 Porous Materials
103(2)
4.4.5 Small-Grained Materials
105(3)
4.4.6 Molecules
108(1)
4.4.6.1 Carbon Fullerenes and Nanotubes
109(6)
4.4.6.2 Dendrimers
115(1)
4.4.6.3 Micelles
115(3)
4.5 Summary
118(1)
Recommendations for Further Reading
119(2)
5 Nanomechanics
121(54)
5.1 Background: The Universe Mechanism
121(2)
5.1.1 Nanomechanics: Which Motions and Forces Make the Cut?
122(1)
5.2 A High-Speed Review of Motion: Displacement, Velocity, Acceleration, and Force
123(2)
5.3 Nanomechanical Oscillators: A Tale of Beams and Atoms
125(32)
5.3.1 Beams
126(1)
5.3.1.1 Free Oscillation
126(3)
5.3.1.2 Free Oscillation from the Perspective of Energy (and Probability)
129(3)
5.3.1.3 Forced Oscillation
132(2)
5.3.2 Atoms
134(1)
5.3.2.1 The Lennard-Jones Interaction: How an Atomic Bond Is Like a Spring
135(4)
5.3.2.2 The Quantum Mechanics of Oscillating Atoms
139(2)
5.3.2.3 The Schrodinger Equation and the Correspondence Principle
141(5)
5.3.2.4 Phonons
146(4)
5.3.3 Nanomechanical Oscillator Applications
150(1)
5.3.3.1 Nanomechanical Memory Elements
150(3)
5.3.3.2 Nanomechanical Mass Sensors: Detecting Low Concentrations
153(4)
5.4 Feeling Faint Forces
157(15)
5.4.1 Scanning Probe Microscopes
158(1)
5.4.1.1 Pushing Atoms Around with the Scanning Tunneling Microscope
158(1)
5.4.1.2 Skimming across Atoms with the Atomic Force Microscope
159(5)
5.4.1.3 Pulling Atoms Apart with the AFM
164(4)
5.4.1.4 Rubbing and Mashing Atoms with the AFM
168(2)
5.4.2 Mechanical Chemistry: Detecting Molecules with Bending Beams
170(2)
5.5 Summary
172(1)
Recommendations for Further Reading
173(2)
6 Nanoelectronics
175(44)
6.1 Background: The Problem (Opportunity)
175(1)
6.2 Electron Energy Bands
175(4)
6.3 Electrons in Solids: Conductors, Insulators, and Semiconductors
179(3)
6.4 Fermi Energy
182(3)
6.5 Density of States for Solids
185(1)
6.5.1 Electron Density in a Conductor
186(1)
6.6 Turn Down the Volume! (How to Make a Solid Act More Like an Atom)
186(1)
6.7 Quantum Confinement
187(11)
6.7.1 Quantum Structures
189(2)
6.7.1.1 Uses for Quantum Structures
191(1)
6.7.2 How Small Is Small Enough for Confinement?
192(1)
6.7.2.1 Conductors: The Metal-to-Insulator Transition
193(1)
6.7.2.2 Semiconductors: Confining Excitons
194(2)
6.7.3 The Band Gap of Nanomaterials
196(2)
6.8 Tunneling
198(4)
6.9 Single-Electron Phenomena
202(9)
6.9.1 Two Rules for Keeping the Quantum in Quantum Dot
205(1)
6.9.1.1 Rule 1: The Coulomb Blockade
206(1)
6.9.1.2 Rule 2: Overcoming Uncertainty
207(1)
6.9.2 Single-Electron Transistor (SET)
208(3)
6.10 Molecular Electronics
211(5)
6.10.1 Molecular Switches and Memory Storage
215(1)
6.11 Summary
216(1)
Recommendations for Further Reading
216(3)
7 Nanoscale Heat Transfer
219(18)
7.1 Background: Hot Topic
219(1)
7.2 All Heat Is Nanoscale Heat
219(2)
7.2.1 Boltzmann's Constant
220(1)
7.3 Conduction
221(9)
7.3.1 Thermal Conductivity of Nanoscale Structures
224(1)
7.3.1.1 Mean Free Path and Scattering of Heat Carriers
224(3)
7.3.1.2 Thermoelectrics: Better Energy Conversion with Nanostructures
227(2)
7.3.1.3 Quantum of Thermal Conduction
229(1)
7.4 Convection
230(2)
7.5 Radiation
232(3)
7.5.1 Increased Radiation Heat Transfer: Mind the Gap!
232(3)
7.6 Summary
235(1)
Recommendations for Further Reading
236(1)
8 Nanophotonics
237(30)
8.1 Background: The Lycurgus Cup and the Birth of the Photon
237(1)
8.2 Photonic Properties of Nanomaterials
238(18)
8.2.1 Photon Absorption
238(2)
8.2.2 Photon Emission
240(1)
8.2.3 Photon Scattering
240(1)
8.2.4 Metals
241(2)
8.2.4.1 Permittivity and the Free Electron Plasma
243(1)
8.2.4.2 Extinction Coefficient of Metal Particles
244(3)
8.2.4.3 Colors and Uses of Gold and Silver Particles
247(2)
8.2.5 Semiconductors
249(1)
8.2.5.1 Tuning the Band Gap of Nanoscale Semiconductors
249(2)
8.2.5.2 Colors and Uses of Quantum Dots
251(3)
8.2.5.3 Lasers Based on Quantum Confinement
254(2)
8.3 Near-Field Light
256(6)
8.3.1 Limits of Light: Conventional Optics
257(2)
8.3.2 Near-Field Optical Microscopes
259(3)
8.4 Optical Tweezers
262(1)
8.5 Photonic Crystals: A Band Gap for Photons
263(1)
8.6 Summary
264(1)
Recommendations for Further Reading
265(2)
9 Nanoscale Fluid Mechanics
267(30)
9.1 Background: Becoming Fluent in Fluids
267(5)
9.1.1 Treating a Fluid the Way It Should Be Treated: The Concept of a Continuum
267(2)
9.1.1.1 Fluid Motion, Continuum Style: The Navier-Stokes Equations
269(1)
9.1.1.2 Fluid Motion: Molecular Dynamics Style
270(2)
9.2 Fluids at the Nanoscale: Major Concepts
272(10)
9.2.1 Swimming in Molasses: Life at Low Reynolds Numbers
272(1)
9.2.1.1 Reynolds Number
273(2)
9.2.2 Surface Charges and the Electrical Double Layer
275(1)
9.2.2.1 Surface Charges at Interfaces
276(1)
9.2.2.2 Gouy-Chapman-Stern Model and Electrical Double Layer
276(3)
9.2.2.3 Electrokinetic Phenomena
279(1)
9.2.3 Small Particles in Small Flows: Molecular Diffusion
279(3)
9.3 How Fluids Flow at the Nanoscale
282(8)
9.3.1 Electroosmosis
282(1)
9.3.2 Ions and Macromolecules Moving through a Channel
283(3)
9.3.2.1 The Convection-Diffusion-Electromigration Equation: Nanochannel Electrophoresis
286(4)
9.3.2.2 Macromolecules in a Nanofluidic Channel
290(1)
9.4 Applications of Nanofluidics
290(3)
9.4.1 Analysis of Biomolecules: An End to Painful Doctor Visits?
291(2)
9.4.2 EO Pumps: Cooling Off Computer Chips
293(1)
9.4.3 Other Applications
293(1)
9.5 Summary
293(2)
Recommendations for Further Reading
295(2)
10 Nanobiotechnology
297(34)
10.1 Background: Our World in a Cell
297(2)
10.2 Introduction: How Biology Feels at the Nanometer Scale
299(6)
10.2.1 Biological Shapes at the Nanoscale: Carbon and Water Are the Essential Tools
299(2)
10.2.2 Inertia and Gravity Are Insignificant: The Swimming Bacterium
301(1)
10.2.3 Random Thermal Motion
302(3)
10.3 The Machinery of the Cell
305(22)
10.3.1 Sugars Are Used for Energy (but Also Structure)
306(1)
10.3.1.1 Glucose
307(3)
10.3.2 Fatty Acids Are Used for Structure (but Also Energy)
310(2)
10.3.2.1 Phospholipids
312(3)
10.3.3 Nucleotides Are Used to Store Information and Carry Chemical Energy
315(1)
10.3.3.1 Deoxyribonucleic Acid
315(5)
10.3.3.2 Adenosine Triphosphate
320(3)
10.3.4 Amino Acids Are Used to Make Proteins
323(1)
10.3.4.1 ATP Synthase
324(3)
10.4 Applications of Nanobiotechnology
327(2)
10.4.1 Biomimetic Nanostructures
328(1)
10.4.2 Molecular Motors
328(1)
10.5 Summary
329(1)
Recommendations for Further Reading
330(1)
11 Nanomedicine
331(18)
11.1 What Is Nanomedicine?
331(1)
11.2 Medical Nanoparticles
332(6)
11.2.1 Nanoshells
332(3)
11.2.2 Lipid-Based Nanoparticles
335(2)
11.2.3 Polymer-Based Nanoparticles
337(1)
11.2.4 Drug Delivery Using Nanoparticles
337(1)
11.3 Nanomedicine and Cancer
338(2)
11.4 Biomimicry in Nanomedicine
340(4)
11.5 Potential Toxicity
344(1)
11.6 Environmental Concerns
345(1)
11.7 Ethical Implications
346(1)
11.8 Commercial Exploration
346(1)
11.9 Summary
347(1)
Recommendations for Further Reading
347(2)
Glossary 349(16)
Index 365
Ben Rogers is a writer and an engineer (BS 2001; MS 2002, University of Nevada, Reno). He has done research at Nanogen, the Oak Ridge National Laboratory, and NASAs Jet Propulsion Laboratory, and published many technical papers, as well as fictional works and essays (which can be found at http://www.readrogers.com). He is currently the principal engineer at NevadaNano.

Jesse Adams (BS 1996, University of Nevada; MS 1997 and PhD 2001, Stanford University) is the vice president and CTO of NevadaNano. He is working to bring multifunctional microsensor technology to the chemical sensing market space.

Sumita Pennathur is currently an associate professor of mechanical engineering at the University of California, Santa Barbara (BS 2000, MS 2001, Massachusetts Institute of Technology; PhD 2005, Stanford University). She has been actively contributing to the fields of nanofluidics and nanoelectromechanical systems (NEMS), and was awarded both a Presidential Early Career Award for Science and Engineering (PECASE) in 2011, and well as a DARPA Young Faculty Award in 2008.