Preface |
|
xi | |
|
|
1 | (17) |
|
|
2 | (2) |
|
|
4 | (4) |
|
1.3 Classical scaling laws |
|
|
8 | (1) |
|
1.4 Short-channel effects |
|
|
8 | (1) |
|
|
9 | (3) |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.5.3 Electrostatic control of the channel |
|
|
11 | (1) |
|
1.6 Ballistic transport in nanotransistors |
|
|
12 | (3) |
|
1.6.1 Top-of-the-barrier model |
|
|
12 | (2) |
|
1.6.2 Ballistic scaling laws |
|
|
14 | (1) |
|
|
15 | (3) |
|
|
16 | (2) |
|
2 Multigate and nanowire transistors |
|
|
18 | (36) |
|
|
18 | (1) |
|
2.2 The multigate architecture |
|
|
19 | (1) |
|
2.3 Reduction of short-channel effects using multigate architectures |
|
|
20 | (9) |
|
|
22 | (1) |
|
|
23 | (1) |
|
2.3.3 Triple- and quadruple-gate MOSFETs |
|
|
24 | (1) |
|
2.3.4 Cylindrical gate-all-around MOSFET |
|
|
25 | (4) |
|
2.4 Quantum confinement effects in nanoscale multigate transistors |
|
|
29 | (15) |
|
|
29 | (7) |
|
2.4.2 Increase of band gap energy |
|
|
36 | (1) |
|
2.4.3 Quantum capacitance |
|
|
37 | (1) |
|
2.4.4 Valley occupancy and transport effective mass |
|
|
38 | (2) |
|
2.4.5 Semimetal--semiconductor nanowire transitions |
|
|
40 | (3) |
|
2.4.6 Topological insulator nanowire transistor |
|
|
43 | (1) |
|
2.4.7 Nanowire-SET transition |
|
|
43 | (1) |
|
2.5 Other multigate field-effect devices |
|
|
44 | (2) |
|
2.5.1 Junctionless transistor |
|
|
44 | (1) |
|
2.5.2 Tunnel field-effect transistor |
|
|
45 | (1) |
|
|
46 | (8) |
|
|
47 | (1) |
|
|
47 | (7) |
|
3 Synthesis and fabrication of semiconductor nanowires |
|
|
54 | (27) |
|
3.1 Top-down fabrication techniques |
|
|
54 | (4) |
|
3.1.1 Horizontal nanowires |
|
|
54 | (3) |
|
|
57 | (1) |
|
3.2 Bottom-up fabrication techniques |
|
|
58 | (8) |
|
3.2.1 Vapor--liquid--solid growth technique |
|
|
59 | (4) |
|
3.2.2 Growth without catalytic particles |
|
|
63 | (1) |
|
3.2.3 Heterojunctions and core-shell nanowires |
|
|
64 | (2) |
|
3.3 Silicon nanowire thinning |
|
|
66 | (6) |
|
|
66 | (1) |
|
|
67 | (2) |
|
3.3.3 Mechanical properties of silicon nanowires |
|
|
69 | (3) |
|
3.4 Carrier mobility in strained nanowires |
|
|
72 | (1) |
|
|
73 | (8) |
|
|
74 | (7) |
|
4 Quantum mechanics in one dimension |
|
|
81 | (26) |
|
|
81 | (1) |
|
4.2 Survey of quantum mechanics in 1D |
|
|
81 | (4) |
|
4.2.1 Schrodinger wave equation in one spatial dimension |
|
|
82 | (1) |
|
4.2.2 Electron current in quantum mechanics |
|
|
83 | (1) |
|
4.2.3 Quantum mechanics in momentum space |
|
|
84 | (1) |
|
|
85 | (3) |
|
4.4 Electron incident on a potential energy barrier |
|
|
88 | (4) |
|
4.5 Electronic band structure |
|
|
92 | (3) |
|
|
93 | (1) |
|
4.5.2 Bloch wave functions |
|
|
94 | (1) |
|
4.6 LCAO and tight binding approximation |
|
|
95 | (5) |
|
4.6.1 Linear combination of atomic orbitals (LCAO) |
|
|
95 | (2) |
|
4.6.2 Tight binding approximation |
|
|
97 | (3) |
|
4.7 Density of states and energy subbands |
|
|
100 | (5) |
|
4.7.1 Density of states in three spatial dimensions |
|
|
100 | (2) |
|
4.7.2 Density of states in two spatial dimensions |
|
|
102 | (2) |
|
4.7.3 Density of states in one spatial dimension |
|
|
104 | (1) |
|
4.7.4 Comparison of 3D, 2D, and 1D density of states |
|
|
104 | (1) |
|
|
105 | (2) |
|
|
106 | (1) |
|
|
106 | (1) |
|
5 Nanowire electronic structure |
|
|
107 | (60) |
|
|
107 | (1) |
|
5.2 Semiconductor crystal structures: group IV and III-V materials |
|
|
107 | (10) |
|
5.2.1 Group IV bonding and the diamond crystal structure |
|
|
107 | (3) |
|
5.2.2 III-V compounds and the zincblende structure |
|
|
110 | (3) |
|
5.2.3 Two-dimensional materials |
|
|
113 | (4) |
|
5.3 Insulators, semiconductors, semimetals, and metals |
|
|
117 | (2) |
|
5.4 Experimental determination of electronic structure |
|
|
119 | (10) |
|
5.4.1 Temperature variation of electrical conductivity |
|
|
119 | (2) |
|
5.4.2 Absorption spectroscopy |
|
|
121 | (2) |
|
5.4.3 Scanning tunneling spectroscopy |
|
|
123 | (4) |
|
5.4.4 Angle resolved photo-emission spectroscopy |
|
|
127 | (2) |
|
5.5 Theoretical determination of electronic structure |
|
|
129 | (20) |
|
5.5.1 Quantum many-body Coulomb problems |
|
|
130 | (4) |
|
5.5.2 Self-consistent field theory |
|
|
134 | (12) |
|
5.5.3 Optimized single determinant theories |
|
|
146 | (1) |
|
|
147 | (2) |
|
5.6 Bulk semiconductor band structures |
|
|
149 | (3) |
|
5.7 Applications to semiconductor nanowires |
|
|
152 | (8) |
|
5.7.1 Nanowire crystal structures |
|
|
152 | (2) |
|
5.7.2 Quantum confinement and band folding |
|
|
154 | (3) |
|
5.7.3 Semiconductor nanowire band structures |
|
|
157 | (3) |
|
|
160 | (7) |
|
|
162 | (1) |
|
|
162 | (5) |
|
6 Charge transport in quasi-1D nanostructures |
|
|
167 | (54) |
|
|
167 | (1) |
|
|
167 | (7) |
|
6.2.1 Semi-classical description |
|
|
167 | (4) |
|
6.2.2 Electrode Fermi--Dirac distributions |
|
|
171 | (3) |
|
6.3 Conductance quantization |
|
|
174 | (14) |
|
6.3.1 Subbands in a hard wall potential nanowire |
|
|
174 | (2) |
|
6.3.2 Conductance in a channel without scattering |
|
|
176 | (3) |
|
6.3.3 Time reversal symmetry and transmission |
|
|
179 | (3) |
|
6.3.4 Detailed balance at thermodynamic equilibrium |
|
|
182 | (1) |
|
6.3.5 Conductance with scattering |
|
|
182 | (4) |
|
6.3.6 Landauer conductance formula: scattering at non-zero temperature |
|
|
186 | (2) |
|
|
188 | (3) |
|
6.5 Scattering mechanisms |
|
|
191 | (9) |
|
6.5.1 Ionized impurity scattering |
|
|
191 | (2) |
|
6.5.2 Resonant backscattering |
|
|
193 | (1) |
|
6.5.3 Remote Coulomb scattering |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
195 | (1) |
|
6.5.7 Electron--phonon scattering |
|
|
196 | (2) |
|
6.5.8 Carrier--carrier scattering |
|
|
198 | (2) |
|
|
200 | (6) |
|
6.6.1 Scattering lengths and conductance regimes |
|
|
200 | (1) |
|
6.6.2 Multiple scattering in a single channel |
|
|
201 | (5) |
|
6.7 Quasi-ballistic transport in nanowire transistors |
|
|
206 | (4) |
|
6.8 Green's function treatment of quantum transport |
|
|
210 | (7) |
|
6.8.1 Green's function for Poisson's equation |
|
|
210 | (1) |
|
6.8.2 Green's function for the Schrodinger equation |
|
|
211 | (2) |
|
6.8.3 Application of Green's function to transport in nanowires |
|
|
213 | (4) |
|
|
217 | (4) |
|
|
217 | (1) |
|
|
217 | (4) |
|
7 Nanowire transistor circuits |
|
|
221 | (28) |
|
|
221 | (10) |
|
|
221 | (3) |
|
|
224 | (3) |
|
7.1.3 Non-volatile memory devices |
|
|
227 | (4) |
|
7.2 Analog and RE transistors |
|
|
231 | (3) |
|
7.3 Crossbar nanowire circuits |
|
|
234 | (3) |
|
7.4 Input/output protection devices |
|
|
237 | (1) |
|
7.5 Chemical and biochemical sensors |
|
|
238 | (4) |
|
|
242 | (7) |
|
|
242 | (7) |
Index |
|
249 | |