Muutke küpsiste eelistusi

E-raamat: Nanowire Transistors: Physics of Devices and Materials in One Dimension

  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Apr-2016
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316560181
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 104,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Apr-2016
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316560181
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

From quantum mechanical concepts to practical circuit applications, this book presents a self-contained and up-to-date account of the physics and technology of nanowire semiconductor devices. It includes a unified account of the critical ideas central to low-dimensional physics and transistor physics which equips readers with a common framework and language to accelerate scientific and technological developments across the two fields. Detailed descriptions of novel quantum mechanical effects such as quantum current oscillations, the metal-to-semiconductor transition and the transition from classical transistor to single-electron transistor operation are described in detail, in addition to real-world applications in the fields of nanoelectronics, biomedical sensing techniques, and advanced semiconductor research. Including numerous illustrations to help readers understand these phenomena, this is an essential resource for researchers and professional engineers working on semiconductor devices and materials in academia and industry.

Arvustused

'This is a very interesting and advanced book that gives a deep introduction to and explanation of the physics behind nanowire transistors It is well written, organized, and self-explanatory, and can be used as a reference by those who wish to enter into the field of nanowire and nanostructure-based electronics. The book has many up-to-date references and clear and precise text with plenty of figures and diagrams, and therefore is a fundamental resource. This is a well-organized book wherein the preceding chapters are used as the basis for understanding the following ones. [ It] is suitable for graduate researchers in materials science and semiconductor devices as well as engineers who want deeper insight into the explanation of nanowire-based devices.' Joana Vaz Pinto, MRS Bulletin

Muu info

A self-contained and up-to-date account of the current developments in the physics and technology of nanowire semiconductor devices.
Preface xi
1 Introduction
1(17)
1.1 Moore's law
2(2)
1.2 The MOS transistor
4(4)
1.3 Classical scaling laws
8(1)
1.4 Short-channel effects
8(1)
1.5 Technology boosters
9(3)
1.5.1 New materials
10(1)
1.5.2 Strain
11(1)
1.5.3 Electrostatic control of the channel
11(1)
1.6 Ballistic transport in nanotransistors
12(3)
1.6.1 Top-of-the-barrier model
12(2)
1.6.2 Ballistic scaling laws
14(1)
1.7 Summary
15(3)
References
16(2)
2 Multigate and nanowire transistors
18(36)
2.1 Introduction
18(1)
2.2 The multigate architecture
19(1)
2.3 Reduction of short-channel effects using multigate architectures
20(9)
2.3.1 Single-gate MOSFET
22(1)
2.3.2 Double-gate MOSFET
23(1)
2.3.3 Triple- and quadruple-gate MOSFETs
24(1)
2.3.4 Cylindrical gate-all-around MOSFET
25(4)
2.4 Quantum confinement effects in nanoscale multigate transistors
29(15)
2.4.1 Energy subbands
29(7)
2.4.2 Increase of band gap energy
36(1)
2.4.3 Quantum capacitance
37(1)
2.4.4 Valley occupancy and transport effective mass
38(2)
2.4.5 Semimetal--semiconductor nanowire transitions
40(3)
2.4.6 Topological insulator nanowire transistor
43(1)
2.4.7 Nanowire-SET transition
43(1)
2.5 Other multigate field-effect devices
44(2)
2.5.1 Junctionless transistor
44(1)
2.5.2 Tunnel field-effect transistor
45(1)
2.6 Summary
46(8)
Further reading
47(1)
References
47(7)
3 Synthesis and fabrication of semiconductor nanowires
54(27)
3.1 Top-down fabrication techniques
54(4)
3.1.1 Horizontal nanowires
54(3)
3.1.2 Vertical nanowires
57(1)
3.2 Bottom-up fabrication techniques
58(8)
3.2.1 Vapor--liquid--solid growth technique
59(4)
3.2.2 Growth without catalytic particles
63(1)
3.2.3 Heterojunctions and core-shell nanowires
64(2)
3.3 Silicon nanowire thinning
66(6)
3.3.1 Hydrogen annealing
66(1)
3.3.2 Oxidation
67(2)
3.3.3 Mechanical properties of silicon nanowires
69(3)
3.4 Carrier mobility in strained nanowires
72(1)
3.5 Summary
73(8)
References
74(7)
4 Quantum mechanics in one dimension
81(26)
4.1 Overview
81(1)
4.2 Survey of quantum mechanics in 1D
81(4)
4.2.1 Schrodinger wave equation in one spatial dimension
82(1)
4.2.2 Electron current in quantum mechanics
83(1)
4.2.3 Quantum mechanics in momentum space
84(1)
4.3 Momentum eigenstates
85(3)
4.4 Electron incident on a potential energy barrier
88(4)
4.5 Electronic band structure
92(3)
4.5.1 Brillouin zone
93(1)
4.5.2 Bloch wave functions
94(1)
4.6 LCAO and tight binding approximation
95(5)
4.6.1 Linear combination of atomic orbitals (LCAO)
95(2)
4.6.2 Tight binding approximation
97(3)
4.7 Density of states and energy subbands
100(5)
4.7.1 Density of states in three spatial dimensions
100(2)
4.7.2 Density of states in two spatial dimensions
102(2)
4.7.3 Density of states in one spatial dimension
104(1)
4.7.4 Comparison of 3D, 2D, and 1D density of states
104(1)
4.8 Conclusions
105(2)
Further reading
106(1)
References
106(1)
5 Nanowire electronic structure
107(60)
5.1 Overview
107(1)
5.2 Semiconductor crystal structures: group IV and III-V materials
107(10)
5.2.1 Group IV bonding and the diamond crystal structure
107(3)
5.2.2 III-V compounds and the zincblende structure
110(3)
5.2.3 Two-dimensional materials
113(4)
5.3 Insulators, semiconductors, semimetals, and metals
117(2)
5.4 Experimental determination of electronic structure
119(10)
5.4.1 Temperature variation of electrical conductivity
119(2)
5.4.2 Absorption spectroscopy
121(2)
5.4.3 Scanning tunneling spectroscopy
123(4)
5.4.4 Angle resolved photo-emission spectroscopy
127(2)
5.5 Theoretical determination of electronic structure
129(20)
5.5.1 Quantum many-body Coulomb problems
130(4)
5.5.2 Self-consistent field theory
134(12)
5.5.3 Optimized single determinant theories
146(1)
5.5.4 GW approximation
147(2)
5.6 Bulk semiconductor band structures
149(3)
5.7 Applications to semiconductor nanowires
152(8)
5.7.1 Nanowire crystal structures
152(2)
5.7.2 Quantum confinement and band folding
154(3)
5.7.3 Semiconductor nanowire band structures
157(3)
5.8 Summary
160(7)
Further reading
162(1)
References
162(5)
6 Charge transport in quasi-1D nanostructures
167(54)
6.1 Overview
167(1)
6.2 Voltage sources
167(7)
6.2.1 Semi-classical description
167(4)
6.2.2 Electrode Fermi--Dirac distributions
171(3)
6.3 Conductance quantization
174(14)
6.3.1 Subbands in a hard wall potential nanowire
174(2)
6.3.2 Conductance in a channel without scattering
176(3)
6.3.3 Time reversal symmetry and transmission
179(3)
6.3.4 Detailed balance at thermodynamic equilibrium
182(1)
6.3.5 Conductance with scattering
182(4)
6.3.6 Landauer conductance formula: scattering at non-zero temperature
186(2)
6.4 Charge mobility
188(3)
6.5 Scattering mechanisms
191(9)
6.5.1 Ionized impurity scattering
191(2)
6.5.2 Resonant backscattering
193(1)
6.5.3 Remote Coulomb scattering
194(1)
6.5.4 Alloy scattering
194(1)
6.5.5 Surface scattering
195(1)
6.5.6 Surface roughness
195(1)
6.5.7 Electron--phonon scattering
196(2)
6.5.8 Carrier--carrier scattering
198(2)
6.6 Scattering lengths
200(6)
6.6.1 Scattering lengths and conductance regimes
200(1)
6.6.2 Multiple scattering in a single channel
201(5)
6.7 Quasi-ballistic transport in nanowire transistors
206(4)
6.8 Green's function treatment of quantum transport
210(7)
6.8.1 Green's function for Poisson's equation
210(1)
6.8.2 Green's function for the Schrodinger equation
211(2)
6.8.3 Application of Green's function to transport in nanowires
213(4)
6.9 Summary
217(4)
Further reading
217(1)
References
217(4)
7 Nanowire transistor circuits
221(28)
7.1 CMOS circuits
221(10)
7.1.1 CMOS logic
221(3)
7.1.2 SRAM cells
224(3)
7.1.3 Non-volatile memory devices
227(4)
7.2 Analog and RE transistors
231(3)
7.3 Crossbar nanowire circuits
234(3)
7.4 Input/output protection devices
237(1)
7.5 Chemical and biochemical sensors
238(4)
7.6 Summary
242(7)
References
242(7)
Index 249
Jean-Pierre Colinge is a Director at the Taiwan Semiconductor Manufacturing Company (TSMC). He is a Fellow of the IEEE and the TSMC and received the IEEE Andrew Grove Award in 2012. He has over 35 years' experience in conducting research on semiconductor devices and has authored several books on the topic. James C. Greer is a Professor and Head of the Graduate Studies Centre at the Tyndall National Institute, and co-founder and Director of EOLAS Designs Ltd, having formerly worked at Mostek, Texas Instruments, and Hitachi Central Research. He received the inaugural Intel Outstanding Researcher Award for Simulation and Metrology in 2012.