Muutke küpsiste eelistusi

E-raamat: Natural Attenuation of Trace Element Availability in Soils

Edited by (CSIRO Land & Water, Glen Osmond, Australia), Edited by (CSIRO Land and Water, Osmond, Australia), Edited by (CSIRO Land & Water, South Australia)
  • Formaat: 256 pages
  • Ilmumisaeg: 16-Nov-2006
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040208342
  • Formaat - EPUB+DRM
  • Hind: 221,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 256 pages
  • Ilmumisaeg: 16-Nov-2006
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040208342

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Understanding attenuation processes is important not only for predicting the behavior of contaminants in soil and formulating remediation strategies, but also for mitigating and enhancing the availability of micronutrients in soil for agricultural applications. Natural Attenuation of Trace Element Availability in Soils brings together pioneering researchers who discuss their cutting-edge work in this area.

The first chapters focus on practical analytical techniques for the measurement and the biological assessment of natural attenuation of trace elements. The following chapters analyze the processes that occur in the natural attenuation of contaminants and nutrients, covering the structural dynamics of mineral surfaces, partitioning, diffusion, fixation, biological and redox processes, and the reversibility of these processes. The remaining chapters consider the impact and implications of natural attenuation in terms of risk assessment, remediation of inorganic contaminants, and bioavailability of essential nutrients.

Offering a concise, well-rounded perspective, Natural Attenuation of Trace Element Availability in Soils demonstrates how attenuation processes can significantly impact strategies for soil remediation and serve as a basis for environmental regulations.
Foreword xiii
Chapter 1 Natural Attenuation of Trace Element Availability Assessed by Chemical Extraction 1(18)
Bal Ram Singh
1.1 Introduction
1(1)
1.2 Chemical Extraction Techniques
2(4)
1.2.1 Single Extractants for Assessment of the Bioavailable Fraction
2(2)
1.2.2 Sequential Extraction Schemes
4(2)
1.3 Attenuation of Element Solubility and Availability in Contaminated Soils
6(8)
1.3.1 Assessing Attenuation by Single Extractants
7(2)
1.3.2 Assessing Attenuation by Sequential Extraction
9(5)
1.4 Other Experimental Parameters of Importance
14(1)
1.5 Conclusions
15(1)
References
16(3)
Chapter 2 Techniques for Measuring Attenuation: Isotopic Dilution Methods 19(22)
Scott Young, Neil Crout, Julian Hutchinson, Andy Tye, Susan Tandy, and Lenah Nakhone
2.1 Introduction
19(1)
2.2 Methodology
19(8)
2.2.1 Suspending Electrolyte: Composition and Preequilibration Time
21(2)
2.2.2 Isotope Equilibration Time
23(1)
2.2.3 Use of Stable Isotopes
24(1)
2.2.4 Comparison of ID Methods and Soil Extractants
25(2)
2.3 Applications
27(10)
2.3.1 Source of Contaminant
27(3)
2.3.2 Effect of Soil pH on Lability
30(1)
2.3.3 Effect of Time on Lability
31(2)
2.3.4 Describing the Solubility of Metals
33(1)
2.3.5 Bioavailability: Comparison of E- and L- Values
34(3)
2.4 Conclusions and Future Directions
37(1)
References
37(4)
Chapter 3 Biological Assessment of Natural Attenuation of Metals in Soil 41(16)
Enzo Lombi, Daryl P Stevens, Rebecca E. Hamon, and Mike J. McLaughlin
3.1 Introduction
41(3)
3.2 Plants as Biological Indicators of Natural Attenuation of Metals in Soil
44(3)
3.3 Invertebrates as Biological Indicators of Natural Attenuation of Metals in Soil
47(2)
3.4 Microbial End Points as Biological Indicators of Natural Attenuation
49(2)
3.5 Limitations of Biological Approaches to Investigate Natural Attenuation
51(2)
3.6 Future Uses and Challenges
53(1)
References
54(3)
Chapter 4 Long-Term Fate of Metal Contaminants in Soils and Sediments: Role of Intraparticle Diffusion in Hydrous Metal Oxides 57(16)
Paras Trivedi and Lisa Axe
4.1 Introduction to Sorption Kinetics
57(1)
4.2 Experimental Methods
58(1)
4.3 Modeling Approach
59(1)
4.4 Results and Discussion
60(2)
4.5 Intraparticle Diffusion and Site Activation Theory
62(2)
4.6 Spectroscopic Evidences of Intraparticle Diffusion
64(2)
4.7 Oxide Coatings
66(2)
4.8 Conclusions
68(1)
References
69(4)
Chapter 5 Structural Dynamics of Metal Partitioning to Mineral Surfaces 73(16)
Robert G. Ford
5.1 Introduction
73(1)
5.2 Ion Partitioning in Unsaturated and Saturated Soils
74(1)
5.3 Partitioning Processes
74(6)
5.3.1 Conceptual Model of Sorbent Dynamics
74(2)
5.3.2 Dilute Solid Solution
76(1)
5.3.3 Neoformation of Surface Precipitates
77(3)
5.3.3.1 Epitaxial Growth
79(1)
5.3.3.2 Interfacial Nucleation
79(1)
5.4 Relevant. Process Rates
80(1)
5.4.1 Redox Transformations Influencing Mineralogy
80(1)
5.5 Influence on Fate and Transport
81(1)
5.6 Data Gaps and Future Directions
82(3)
5.6.1 Adsorption as a Reaction Intermediate to Precipitation
83(1)
5.6.2 In Situ Rates of Mineral Transformation
84(1)
5.6.3 Incorporation at Crystal Structure Defects
85(1)
Acknowledgments
85(1)
References
86(3)
Chapter 6 Effects of Humic Substances on Attenuation of Metals: Bioavailability and Mobility in Soil 89(24)
Christopher A. Impellitteri and Herbert E. Allen
6.1 Introduction
89(1)
6.2 Humic Substances: Definitions and Structure
90(3)
6.3 Solid-Phase Organic Substances
93(1)
6.4 Leaching of Solid-Phase Soil Organic Matter
94(1)
6.5 Sorption of Dissolved Humic Substances
94(1)
6.6 Metal Attenuation by Solid-Phase Organic Matter
95(1)
6.7 Metal Sorption and Chelation by Soluble and Potentially Soluble Humic Substances
96(1)
6.8 Ternary Complexation
97(1)
6.9 Effect of Humic Substances on the Solid Phase and Solution Phase Distribution of Metals
98(5)
6.10 Humic Substances, Metals, and Models
103(1)
6.11 Models Including Humic Substances
104(2)
6.12 Conclusion
106(1)
Acknowledgments
106(1)
References
106(7)
Chapter 7 Attenuation of Metal Toxicity in Soils by Biological Processes 113(24)
M.B. McBride
7.1 Introduction
113(1)
7.2 The Biological Response to Metal Stress
114(2)
7.2.1 Bioconcentration by Soil Biota
114(1)
7.2.2 Soil Organic Matter Accretion
114(1)
7.2.3 Generation of Metal-Chelating Compounds
115(1)
7.2.4 Metal Release in Volatile Form
115(1)
7.2.5 Metal Binding on Cell Walls and Biogenic Minerals
115(1)
7.3 Experimental Evidence for Biological Control of Metal Solubility
116(9)
7.3.1 Importance of DOM in Metal Solubility and Facilitated Transport
116(1)
7.3.2 Temperature-Induced Metal Release with Aging
117(2)
7.3.3 High Affinity of Most Metals for Organic Matter
119(2)
7.3.4 The Important Role of Sulfur in Strong Metal Bonding
121(1)
7.3.5 Behavior of Metals in Model Mineral-Organic Systems
121(2)
7.3.6 Rhizosphere Effects on Metal Solubility
123(1)
7.3.7 Biological Control of Bioavailability
123(1)
7.3.8 Sensitivity of Metal Solubility to Oxidation Status
124(1)
7.4 Implications of Biological Control: Explaining Metal Losses from Soils
125(5)
7.5 Summary
130(1)
References
131(6)
Chapter 8 Redox Processes and Attenuation of Metal Availability in Soils 137(20)
Neal Menzies
8.1 Introduction
137(1)
8.2 Redox Conditions in Soils
138(3)
8.3 Redox-Active Trace Elements in Soils
141(3)
8.3.1 Arsenic
141(1)
8.3.2 Selenium
142(1)
8.3.3 Chromium
143(1)
8.4 Indirect Effects on Trace Element Availability
144(6)
8.4.1 Effects of pH Change
144(1)
8.4.2 Precipitation of Carbonates and Sulfides
145(1)
8.4.3 Reductive Dissolution of Mn and Fe Oxides
146(2)
8.4.4 Altered Soil-Solution Composition
148(1)
8.4.5 Organic Matter
149(1)
8.5 Attenuation of Metal Availability by Redox Reactions
150(1)
References
151(6)
Chapter 9 Fixation of Cadmium and Zinc in Soils: Implications for Risk Assessment 157(16)
Erik Smolders and Fien Degryse
9.1 Introduction
157(8)
9.1.1 Risks of Cadmium in Soil
158(1)
9.1.2 Fixation of Cadmium in Soils
159(3)
9.1.3 Biological Evidence for Cadmium Fixation
162(2)
9.1.4 Implications for Risk Assessment
164(1)
9.2 Zinc
165(4)
9.2.1 Risks of Zinc in Soil
165(1)
9.2.2 Fixation of Zinc in Soils
165(2)
9.2.3 Biological Evidence for Zinc Fixation
167(2)
9.2.4 Implications for Risk Assessment
169(1)
References
169(4)
Chapter 10 Natural Attenuation: Implications for Trace Metal/Metalloid Nutrition 173(24)
Rebecca Hamon, Samuel Stacey, Enzo Lombi, and Mike McLaughlin
10.1 Introduction
173(1)
10.2 Essential Micronutrients
173(1)
10.3 Importance of Understanding Micronutrient Attenuation
174(1)
10.4 Studies of Micronutrient Attenuation
175(8)
10.4.1 Zinc
175(1)
10.4.2 Copper
176(5)
10.4.3 Cobalt, Molybdenum, and Selenium
181(2)
10.5 Environmental Consequences
183(1)
10.6 Strategies to Access Fixed Forms of Micronutrients
183(2)
10.7 Strategies to Minimize Fixation of Trace Elements Applied as Fertilizers
185(5)
10.7.1 Foliar Application
185(1)
10.7.2 Banding
186(1)
10.7.3 Acidifying Fertilizers
186(1)
10.7.4 Synthetic Chelates
187(2)
10.7.5 Natural Chelating Agents
189(1)
10.8 Conclusions
190(7)
Chapter 11 Use of Soil Amendments to Attenuate Trace Element Exposure: Sustainability, Side Effects, and Failures 197(32)
Michel Mench, Jaco Vangronsveld, Nick Lepp, Ann Ruttens, Petra Bleeker, and Wouter Geebelen
11.1 Introduction
197(1)
11.2 Types of Soil Amendments
198(2)
11.3 Endpoints for Testing Efficacy of Attenuation
200(1)
11.4 Background to Experimental Sites
200(3)
11.5 Chemical Tests and Speciation
203(2)
11.6 Leaching
205(2)
11.7 Effects of Different Amendments on Plant Growth and Contaminant Uptake
207(7)
11.7.1 Biosolids Combined with Liming
207(2)
11.7.1.1 Pronto Mine Experiment, Canada
208(1)
11.7.1.2 Leadville Experiment, Colorado
208(1)
11.7.1.3 Bunker Hill Experiment, Idaho
208(1)
11.7.1.4 Palmerton Experiment, Pennsylvania
208(1)
11.7.2 Cyclonic Ashes (Beringite): Lommel-Maatheide and Overpelt Experiments, Belgium
209(1)
11.7.3 Metal Oxides
209(1)
11.7.4 Zerovalent Fe-Related Compounds Combined with Cyclonic Ashes
210(2)
11.7.4.1 Louis Fargue Experiment, Domaine INRA de Couhins, France
210(1)
11.7.4.2 Jales Experiments
210(1)
11.7.4.3 Small-Scale Reppel Experiment
211(1)
11.7.5 Zeolites
212(1)
11.7.6 Red Muds
213(1)
11.7.7 Phosphate Compounds
213(1)
11.7.8 Clays
213(1)
11.7.9 Competitive Uptake at the Root Surface and Competitive Transfer into Plant Parts
214(1)
11.8 Impacts on and Uptake by Other Organisms
214(2)
11.8.1 Soil Microorganisms
214(1)
11.8.2 Earthworms and Mites
215(1)
11.8.3 Mammals and Birds
215(1)
11.9 Biodiversity and Genetic Adaptation of Organisms
216(1)
11.10 Failures, Side Effects, and Limitations of Chemical Immobilization Methods for Soil Remediation
217(4)
11.10.1 Failures
217(2)
11.10.2 Side Effects
219(1)
11.10.3 Limitations
220(1)
11.11 Conclusions
221(2)
References
223(6)
Index 229


Rebecca Hamon, Mike McLaughlin, Enzo Lombi