Muutke küpsiste eelistusi

E-raamat: Natural Gas Hydrates in Flow Assurance

Editor-in-chief , Edited by , Edited by
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 12-Oct-2010
  • Kirjastus: Gulf Professional Publishing
  • Keel: eng
  • ISBN-13: 9781856179461
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 97,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 12-Oct-2010
  • Kirjastus: Gulf Professional Publishing
  • Keel: eng
  • ISBN-13: 9781856179461
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

With millions of kilometres of onshore and offshore oil and gas pipelines in service around the world, pipelines are the life’s blood of the world. Notorious for disrupting natural gas production or transmission, the formation of natural gas hydrates can cost a company hundreds of millions and lead to catastrophic equipment breakdowns and safety and health hazards. Written by an international group of experts, Natural gas Hydrates in Flow Assurance provide an expert overview of the practice and theory in natural gas hydrates, with applications primarily in flow assurance. Compact and easy to use, the book provides readers with a wealth of materials which include the key lessons learned in the industry over the last 20 years. Packed with field case studies, the book is designed to provide hands-on training and practice in calculating hydrate phase equilibria and plug dissociation. In addition readers receive executable programs to calculate hydrate thermodynamics.

    Case studies of hydrates in flow assurance

    The key concepts underlying the practical applications

    An overview of the state of the art flow assurance industrial developments

    Muu info

    Provides hands-on training and practice in calculating hydrate phase equilibria and plug dissociation
    List of Figures
    xiii
    Preface xxi
    1 Introduction
    1(12)
    Dendy Sloan
    1.1 Why are Hydrates Important?
    1(1)
    1.2 What are Hydrates?
    2(2)
    1.2.1 Hydrate Crystal Structures
    2(2)
    1.3 Four Rules of Thumb Arising from Crystal Structure
    4(5)
    1.4
    Chapter Summary Application: Methane Hydrate Formation on an Emulsified Water Droplet
    9(2)
    References
    11(2)
    2 Where and How are Hydrate Plugs Formed?
    13(24)
    Dendy Sloan
    Jefferson Creek
    Amadeu K. Sum
    2.1 Where do Hydrates form in Offshore Systems?
    13(3)
    2.2 How do Hydrate Plugs form? Four Conceptual Pictures
    16(16)
    2.2.1 Hydrate Blockages in Oil-Dominated Systems
    17(1)
    2.2.1.1 Rules of Thumb for Hydrate Formation in Oil-Dominated Systems
    18(1)
    2.2.1.2 A Model for Hydrate Formation in Oil-Dominated Flowlines
    19(3)
    2.2.2 Hydrate Formation in Gas-Condensate Systems
    22(1)
    2.2.2.1 Case Study 1: Tommeliten-Gamma Field
    22(2)
    2.2.2.2 Case Study 2: Werner-Bolley Field Hydrate Formation
    24(2)
    2.2.2.3 Hypothesized Mechanism for Gas-Dominated Systems
    26(1)
    2.2.3 Hydrate Blockages in Condensate Flowlines
    27(4)
    2.2.4 High-Water-Cut (Volume) Systems
    31(1)
    2.3 Risk Management in Hydrate Plug Prevention
    32(3)
    2.3.1 Cold Stabilized Flow
    33(2)
    2.4 Relationship of
    Chapter to Subsequent Content
    35(1)
    References
    35(2)
    3 Safety in Hydrate Plug Removal
    37(12)
    Carolyn Koh
    Jefferson Creek
    3.1 Two Safety Case Studies
    37(9)
    3.1.1 Case Study 1: One-Sided Depressurization
    37(1)
    3.1.1.1 The Cause and Effect of Hydrate Projectiles
    38(3)
    3.1.1.2 Predicting Plug Projectile Effects
    41(3)
    3.1.1.2.1 Example Calculation
    44(1)
    3.1.1.3 The Effect of Multiple Plugs
    45(1)
    3.1.2 Case Study 2: Heating a Plug
    45(1)
    3.2 Common Circumstances of Plug Formation and Plug Removal Safety
    46(1)
    3.2.1 Common Circumstances of Plug Formation
    46(1)
    3.2.2 Plug Removal Safety Recommendations
    46(1)
    3.3 Relationship of
    Chapter to Subsequent Content
    47(1)
    References
    47(2)
    4 How Hydrate Plugs are Remediated
    49(38)
    Norm McMullen
    4.1 Introduction
    50(1)
    4.2 Safety Concerns
    51(1)
    4.3 Blockage Identification
    52(2)
    4.3.1 Determining Cause of Blockage
    53(1)
    4.4 Locating Blockage
    54(1)
    4.5 Determining Blockage Size
    55(1)
    4.6 Blockage Removal Options
    56(7)
    4.6.1 Pressure
    57(1)
    4.6.2 Chemical
    58(1)
    4.6.3 Mechanical
    58(1)
    4.6.4 Thermal
    59(1)
    4.6.4.1 Heated Bundle
    60(1)
    4.6.4.2 Electrical Heating
    61(1)
    4.6.4.3 Heating Tent
    61(1)
    4.6.4.4 Mud or Fluid Circulation
    61(1)
    4.6.4.5 External Heat Tracing
    62(1)
    4.6.4.6 Guiding Principles for Thermal Remediation
    62(1)
    4.7 Removal Strategies
    63(12)
    4.7.1 Pipelines/Flowlines Strategy
    63(1)
    4.7.1.1 Recommended Order of Consideration
    64(1)
    4.7.1.2 Detailed Discussion of Pipelines/Flowlines Strategy
    64(1)
    4.7.1.2.1 Pressure Method
    64(1)
    4.7.1.2.2 Chemical Management
    65(1)
    4.7.1.2.3 Mechanical Method
    65(1)
    4.7.1.4.4 Thermal Method
    66(1)
    4.7.2 Wells Strategy
    66(1)
    4.7.2.1 Recommended Order of Consideration
    67(1)
    4.7.2.2 Detailed Discussion of Well Strategy
    67(1)
    4.7.2.2.1 Pressure Method
    67(1)
    4.7.2.2.2 Chemical Method
    68(1)
    4.7.2.2.3 Mechanical Method
    68(1)
    4.7.2.2.4 Thermal Method
    68(1)
    4.7.3 Risers Strategy
    69(1)
    4.7.3.1 Recommended Order of Consideration
    69(1)
    4.7.3.2 Detailed Discussion of Riser Strategy
    70(1)
    4.7.3.2.1 Pressure Method
    70(1)
    4.7.3.2.2 Chemical Method
    70(1)
    4.7.3.2.3 Mechanical Method
    71(1)
    4.7.3.2.4 Thermal Method
    71(1)
    4.7.4 Equipment Strategy
    72(1)
    4.7.4.1 Recommended Order of Consideration
    72(1)
    4.7.4.2 Detailed Discussion of Remediation Strategy
    72(1)
    4.7.4.2.1 Pressure Method
    72(1)
    4.7.4.2.2 Chemical Method
    73(1)
    4.7.4.2.3 Mechanical Method
    73(1)
    4.7.4.2.4 Thermal Method
    74(1)
    4.8 Case Studies
    75(6)
    4.8.1 Export Pipeline (BP Pompano)
    75(1)
    4.8.1.1 Strategy Employed to Dissociate the Plug
    76(1)
    4.8.2 Gas Condensate Pipeline (Chevron)
    77(1)
    4.8.3 Well (Gas Condensate)
    78(1)
    4.8.4 Equipment (BP Gulf of Mexico)
    78(3)
    References
    81(1)
    Appendix
    82(5)
    5 Artificial and Natural Inhibition of Hydrates
    87(18)
    Thierry Palermo
    Dendy Sloan
    5.1 How Thermodynamic Hydrate Inhibitors Function and How They are Used
    88(4)
    5.2 The Low Dosage Hydrate Inhibitors (LDHIs)
    92(5)
    5.2.1 Kinetic Hydrate Inhibitors
    92(3)
    5.2.2 Anti-Agglomerants
    95(2)
    5.3 Naturally Inhibited Oils
    97(6)
    5.3.1 Viscosity of Suspension
    98(1)
    5.3.2 Viscosity of Aggregated Suspension
    98(2)
    5.3.3 Methodology
    100(1)
    5.3.4 Prediction
    101(2)
    5.4 Conclusion
    103(1)
    References
    103(2)
    6 Kinetic Hydrate Inhibitor Performance
    105(40)
    Mike Eaton
    Jason Lachance
    Larry Talley
    6.1 Introduction
    105(1)
    6.2 Study 1: Miniloop Flowing KHI Hold Time
    106(5)
    6.3 Study 2: Autoclave Testing Methodology
    111(17)
    6.3.1 Introduction
    112(2)
    6.3.2 Miniloop Equivalence Requirements
    114(2)
    6.3.3 Device Design
    116(4)
    6.3.4 Test Procedures and Data Interpretation
    120(1)
    6.3.4.1 Teq Tests
    120(8)
    6.4 Hold-Time Tests
    128(4)
    6.4.1 Autoclave Study Summary
    132(1)
    6.5 Study 3: Correlation of Miniloop, Large Loop, and Rocking Cell Results
    132(1)
    6.6 Study 4---Correlation of Large Loop and Field Results
    133(1)
    6.7 Conclusion
    134(1)
    References
    135(1)
    Appendix
    136(9)
    7 Industrial Operating Procedures for Hydrate Control
    145(18)
    Adam Ballard
    George Shoup
    Dendy Sloan
    7.1 Introduction
    145(1)
    7.2 Deepwater System Design
    146(1)
    7.3 Application of
    Chapters 1 through 6
    147(6)
    7.3.1 Question 1: When and Where Are Hydrates Likely to Form in the Production System?
    148(1)
    7.3.2 Question 2: What Can I Control in Order to Prevent Hydrates from Forming?
    148(1)
    7.3.3 Question 3: What are the Monitoring Points in the System That Will Give Indication of Hydrates?
    149(1)
    7.3.3.1 Risk of Hydrate Plugging
    150(1)
    7.3.3.2 Signs of Hydrate Plugging
    150(1)
    7.3.4 Question 4: If a Hydrate Plug Forms in the Production System, How Can It Be Remediated?
    151(1)
    7.3.4.1 Inject Chemical
    152(1)
    7.3.4.2 Stop Flow
    152(1)
    7.3.4.3 Reduce Flow
    152(1)
    7.3.4.4 Increase Flow
    152(1)
    7.4 Generation of Operating Procedures for Hydrate Control
    153(2)
    7.4.1 Detailed Design---Customer: Engineering
    153(1)
    7.4.2 Operating Guidelines---Customer: Engineering and Operations
    153(1)
    7.4.3 Operating Procedures---Customer: Operations
    154(1)
    7.5 Operating Procedure Details
    155(5)
    7.5.1 Who Is the Customer?
    156(1)
    7.5.2 Writing an Operating Procedure
    157(3)
    7.6 Sample Operating Procedure: Cold Well Startup into Cold System
    160(2)
    7.6.1 Pre-Startup Checklist
    161(1)
    7.6.2 Restart Guidelines
    161(1)
    7.7 Relationship of
    Chapter to Others in This Book
    162(1)
    References
    162(1)
    8 Conclusion
    163(8)
    8.1
    Chapter 1: Basic Structures and Formation Properties
    164(1)
    8.2
    Chapter 2: How Hydrate Plugs Form and are Prevented
    165(1)
    8.3
    Chapter 3: Hydrate Safety during Remediation
    166(1)
    8.4
    Chapter 4: Industrial Methods for Hydrate Plug Dissociation
    167(1)
    8.5
    Chapter 5: Inhibitor Mechanisms and Naturally Inhibited Oils
    167(2)
    8.6
    Chapter 6: Certifying Hydrate Kinetic Inhibitors for Field Performance
    169(1)
    8.7
    Chapter 7: Offshore Production Operating Procedures for Hydrate Control
    169(2)
    Appendix: Six Industrial Hydrate Blockage Examples and Lessons Learned 171(22)
    Index 193