Muutke küpsiste eelistusi

E-raamat: Natural Language Processing and Chinese Computing: 10th CCF International Conference, NLPCC 2021, Qingdao, China, October 13-17, 2021, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 98,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This two-volume set of LNAI 13028 and LNAI 13029 constitutes the refereed proceedings of the 10th CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2021, held in Qingdao, China, in October 2021.

The 66 full papers, 23 poster papers, and 27 workshop papers presented were carefully reviewed and selected from 446 submissions. They are organized in the following areas: Fundamentals of NLP; Machine Translation and Multilinguality; Machine Learning for NLP; Information Extraction and Knowledge Graph; Summarization and Generation; Question Answering; Dialogue Systems; Social Media and Sentiment Analysis; NLP Applications and Text Mining; and Multimodality and Explainability.

Posters - Fundamentals of NLP.- Syntax and Coherence - The Effect on
Automatic Argument Quality Assessment.- ExperienceGen 1.0: A Text Generation
Challenge Which Requires Deduction and Induction Ability.- Machine
Translation and Multilinguality.- SynXLM-R: Syntax-enhanced XLM-R in
Translation Quality Estimation.- Machine Learning for NLP.- Memetic Federated
Learning for Biomedical Natural Language Processing.- Information Extraction
and Knowledge Graph.- Event Argument Extraction via a Distance-Sensitive
Graph Convolutional Network.- Exploit Vague Relation: An Augmented Temporal
Relation Corpus and Evaluation.- Searching Effective Transformer for Seq2Seq
Keyphrase Generation.- Prerequisite Learning with Pre-trained Language and
Graph Embedding Models.- Summarization and Generation.- Variational
Autoencoder with Interactive Attention for Affective Text Generation.-
CUSTOM: Aspect-Oriented Product Summarization for E-Commerce.- Question
Answering.-FABERT: A Feature Aggregation BERT-Based Model for Document
Reranking.- Generating Relevant, Correct and Fluent Answers in Natural Answer
Generation.- GeoCQA: A Large-scale Geography-Domain Chinese Question
Answering Dataset from Examination.- Dialogue Systems.- Generating
Informative Dialogue Responses with Keywords-Guided Networks.- Zero-Shot
Deployment for Cross-Lingual Dialogue System.- MultiWOZ 2.3: A multi-domain
task-oriented dialogue dataset enhanced with annotation corrections and
co-reference annotation.- EmoDialoGPT: Enhancing DialoGPT with Emotion.-
Social Media and Sentiment Analysis.- BERT-based Meta-learning Approach with
Looking Back for Sentiment Analysis of Literary Book Reviews.- ISWR: an
Implicit Sentiment Words Recognition Model Based on Sentiment Propagation.-
An Aspect-Centralized Graph Convolutional Network for Aspect-based Sentiment
Classification.- NLP Applications and Text Mining.- Capturing Global
Informativeness in Open Domain Keyphrase Extraction.- Background Semantic
Information Improves VerbalMetaphor Identification.- Multimodality and
Explainability.- Towards unifying the explainability evaluation methods for
NLP.- Explainable AI Workshop.- Detecting Covariate Drift with Explanations.-
A Data-Centric Approach Towards Deducing Bias in Artificial Intelligence
Systems for Textual Contexts.- Student Workshop.- Enhancing Model Robustness
via Lexical Distilling.- Multi-stage Multi-modal Pre-training for Video
Representation.- Nested Causality Extraction on Traffic Accident Texts as
Question Answering.- Evaluation Workshop.- MSDF: A General Open-Domain
Multi-Skill Dialog Framework.- RoKGDS: A Robust Knowledge Grounded Dialog
System.- Enhanced Few-shot Learning with Multiple-Pattern-Exploiting
Training.- BIT-Event at NLPCC-2021 Task 3: Subevent Identification via
Adversarial Training.- Few-shot Learning for Chinese NLP tasks.- When
Few-shot Learning Meets Large-scale Knowledge-enhanced Pre-training: Alibaba
at FewCLUE.- TKB²ert: Two-stage Knowledge Infused Behavioral Fine-tuned
BERT.- A Unified Information Extraction System Based on Role Recognition and
Combination.- A Simple but Effective System for Multi-format Information
Extraction.- A Hierarchical Sequence Labeling Model for Argument Pair
Extraction.- Distant finetuning with discourse relations for stance
classification.- The Solution of Xiaomi AI Lab to the 2021 Language and
Intelligence Challenge: Multi-Format Information Extraction Task.- A Unified
Platform for Information Extraction with Two-stage Process.- Overview of the
NLPCC 2021 Shared Task: AutoIE2.- Task 1 - Argumentative Text Understanding
for AI Debater (AIDebater).- Two Stage Learning for Argument Pairs
Extraction.- Overview of Argumentative Text Understanding for AI Debater
Challenge.- ACE: A Context-Enhanced model for Interactive Argument Pair
Identification.- Context-Aware and Data-Augmented Transformer for Interactive
Argument Pair Identification.- ARGUABLY @ AI Debater-NLPCC 2021 Task 3:
Argument Pair Extraction from Peer Review and Rebuttals.- Sentence Rewriting
for Fine-Tuned Model Based on Dictionary: Taking the Track 1 of NLPCC 2021
Argumentative Text Understanding for AI Debater as an Example.- Knowledge
Enhanced transformers System for Claim Stance Classification.