Muutke küpsiste eelistusi

E-raamat: Natural Language Processing and Chinese Computing: 13th National CCF Conference, NLPCC 2024, Hangzhou, China, November 1-3, 2024, Proceedings, Part III

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The five-volume set LNCS 15359 - 15363 constitutes the refereed proceedings of the 13th National CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2024, held in Hangzhou, China, during November 2024.

The 161 full papers and 33 evaluation workshop papers included in these proceedings were carefully reviewed and selected from 451 submissions. They deal with the following areas: Fundamentals of NLP; Information Extraction and Knowledge Graph; Information Retrieval, Dialogue Systems, and Question Answering; Large Language Models and Agents; Machine Learning for NLP; Machine Translation and Multilinguality; Multi-modality and Explainability; NLP Applications and Text Mining; Sentiment Analysis, Argumentation Mining, and Social Media; Summarization and Generation.
Improving Causal Inference of Large Language Models with SCM Tools.- A
Privacy-Preserving Framework for Medical Chatbot based on LLM with Retrieval
Augmented Generation.- Regularized Continual Learning for Large-Scale
Language Models via Probing.- LasQ: Largest Singular Components fine-tuning
for LLMs with Quantization.- MultiAICL: Multi-Task Tuning for Augmented
In-Context Learning in Text Style Transfer.- What is the best model?
Application-driven Evaluation for Large Language Models.-Sparse Mixture of
Experts Language Models Excel in Knowledge Distillation.- Evaluation and
Analysis of the Chinese Semantic Dependency Understanding Ability of Large
Language Models.- Reparameterization-based Parameter-Efficient Fine-Tuning
Methods for Large Language Models: A Systematic Survey.- SACL: Sequential
Augmentation with Curriculum Learning in Dataset Level.- Classifiers Guided
Controllable Text Generation for Discrete Diffusion Language Models.-
AugMixSpeech: A Data Augmentation Method and Consistency Regularization for
Mandarin Automatic Speech Recognition.- FIRP: Faster LLM inference via future
intermediate representation prediction.- Margin Discrepancy-based Adversarial
Training for Multi-Domain Text Classification.- Effective Knowledge Graph
Embedding with Quaternion Convolutional Networks.- Improving End-to-End
Speech Translation with Progressive Dual Encoding.- Assessing Translation
Quality of Hypotactic Structure for Chinese-to-English Machine Translation.-
Understanding and Improving Low-Resource Neural Machine Translation with
Shallow Features.- Improving Non-autoregressive Machine Translation with
Error Exposure and Consistency Regularization.- Neural Chat Translation as
Online Document-to-Document Translation.- Autogenerated MQM Data for Quality
Estimation based on Sequence Labeling.- Pruning Residual Networks in
Multilingual Neural Machine Translation to Improve Zero-shot Translation.-
Leveraging Parameter-Efficient Fine-Tuning for Multilingual Abstractive
Summarization.- Improving Automatic Post-editing with Error Prompts Extracted
from Quality Estimation.- Progressive and Consistent Subword Regularization
for Neural Machine Translation.- Language-Emphasized Cross-Lingual In-Context
Learning for Multilingual LLM.- A Multilevel Interaction Network Framework
for Multimodal Entity Linking.- Evaluating the Fidelity of Image Captioning
via Weighted Boolean Question Answering.- Optimized Conversational Gesture
Generation with Enhanced Motion Feature Extraction and Cascaded Generator.-
Exploring the Potential of Prompting Methods in Low-resource Speech
Recognition with Whisper.- RAVL: A Retrieval-Augmented Visual Language Model
Framework for Knowledge-Based Visual Question Answering.- ASRLM: ASR-Robust
Language Model Pre-Training via Generative and Discriminative learning.-
DFS-QA: Dynamic Frame Selection for Better Video Question Answering.- Deep
Foreground-Background Weighted Cross-Modal Hashing.- Graph Interpretation of
Image-Text matching: Link Prediction on Concept-Enhanced Cross-Modal Graph.-
Multi-Granularity Semantic Guided Transformer for Radiology Report
Generation.- Steganographic Text Generation Based on Large Language Models in
Dialogue Scenarios.- A Novel ICD Coding Method Based on Associated and
Hierarchical Code Description Distillation.