Muutke küpsiste eelistusi

E-raamat: On Necessary and Sufficient Conditions for $L^p$-Estimates of Riesz Transforms Associated to Elliptic Operators on $\mathbb {R}^n$ and Related Estimates

  • Formaat - PDF+DRM
  • Hind: 87,52 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This memoir focuses on $Lp$ estimates for objects associated to elliptic operators in divergence form: its semigroup, the gradient of the semigroup, functional calculus, square functions and Riesz transforms. The author introduces four critical numbers associated to the semigroup and its gradient that completely rule the ranges of exponents for the $Lp$ estimates. It appears that the case $p<2$ already treated earlier is radically different from the case $p>2$ which is new. The author thus recovers in a unified and coherent way many $Lp$ estimates and gives further applications. The key tools from harmonic analysis are two criteria for $Lp$ boundedness, one for $p<2$ and the other for $p>2$ but in ranges different from the usual intervals $(1,2)$ and $(2,\infty)$.
Acknowledgements ix
Introduction xi
Notation xvii
Beyond Calderon-Zygmund operators
1(8)
Basic L2 theory for elliptic operators
9(6)
Definition
9(1)
Holomorphic functional calculus on L2
9(1)
L2 off-diagonal estimates
10(2)
Square root
12(1)
The conservation property
12(3)
Lp theory for the semigroup
15(10)
Hypercontractivity and uniform boundedness
15(2)
W1,p elliptic estimates and hypercontractivity
17(2)
Gradient estimates
19(2)
Summary
21(1)
Sharpness issues
22(1)
Analytic extension
22(3)
Lp theory for square roots
25(16)
Riesz transforms on Lp
25(7)
Reverse inequalities
32(4)
Invertibility
36(1)
Applications
37(1)
Riesz transforms and Hodge decomposition
38(3)
Riesz transforms and functional calculi
41(10)
Blunck & Kunstmann's theorem
41(1)
Hardy-Littlewood-Sobolev estimates
42(2)
The Hardy-Littlewood-Sobolev-Kato diagram
44(3)
More on the Kato diagram
47(4)
Square function estimates
51(14)
Necessary and sufficient conditions for boundedness of vertical square functions
51(9)
On inequalities of Stein and Fefferman for non-tangential square functions
60(5)
Miscellani
65(4)
Local theory
65(1)
Higher order operators and systems
66(3)
Appendix A. Calderon-Zygmund decomposition for Sobolev functions 69(4)
Appendix. Bibliography 73