Muutke küpsiste eelistusi

E-raamat: Negation and Speculation Detection

(University of Huelva), (University of Huelva)
  • Formaat: 105 pages
  • Sari: Natural Language Processing 13
  • Ilmumisaeg: 06-Feb-2019
  • Kirjastus: John Benjamins Publishing Co
  • Keel: eng
  • ISBN-13: 9789027262950
  • Formaat - EPUB+DRM
  • Hind: 98,80 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 105 pages
  • Sari: Natural Language Processing 13
  • Ilmumisaeg: 06-Feb-2019
  • Kirjastus: John Benjamins Publishing Co
  • Keel: eng
  • ISBN-13: 9789027262950

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Negation and speculation detection is an emerging topic that has attracted the attention of many researchers, and there is clearly a lack of relevant textbooks and survey texts. This book aims to define negation and speculation from a natural language processing perspective, to explain the need for processing these phenomena, to summarise existing research on processing negation and speculation, to provide a list of resources and tools, and to speculate about future developments in this research area. An advantage of this book is that it will not only provide an overview of the state of the art in negation and speculation detection, but will also introduce newly developed data sets and scripts. It will be useful for students of natural language processing subjects who are interested in understanding this task in more depth and for researchers with an interest in these phenomena in order to improve performance in other natural language processing tasks.

Arvustused

Overall, the book is structured in a logical and clear manner and is written in precise and concise academic language. The fact that the volume under review is not bulky (i.e. only ninety-five pages in length) does not detract from its value. Readers would feel like sitting vis-a`-vis with the authors while reading the book, and therefore it could be used as either a classroom text or a supplement reading. Nevertheless, the book may require readers to have basic statistics knowledge and data analytic techniques. Particularly, it may appeal to those who specialize in quantitative linguistics, computational linguistics, NLP, corpus linguistics, corpus-based translation studies, and so forth. Those who attempt to employ quantitative approaches to investigate negative and speculative language in other domains would also find this book useful. For these reasons, Cruz Díaz and Maña Lópezs present work is a great contribution to the field of quantitative studies and is well worth recommending. -- Haoda Feng, Bohai University, P. R. China, in Digital Scholarship in the Humanities, 8 October 2019

Acknowledgements vii
List of Abbreviations
ix
Chapter 1 Introduction
1(6)
1.1 Motivation
1(1)
1.2 Negation and speculation in natural language
2(1)
1.3 Basic notions
3(1)
1.4 Application domains
4(2)
1.5 Structure of the book
6(1)
Chapter 2 Negation
7(20)
2.1 Definition of negation
7(2)
2.2 Types of negation
9(1)
2.3 Negation detection
10(13)
2.3.1 Rule-based approaches
11(2)
2.3.2 Machine learning based systems
13(4)
2.3.3 Hybrid approaches
17(1)
2.3.4 Deep learning
18(1)
2.3.5 Other works
19(4)
2.4 Conclusions and chapter summary
23(1)
2.5 Further reading and relevant resources
23(4)
Chapter 3 Speculation
27(16)
3.1 Defining speculation
27(2)
3.2 Speculation detection
29(10)
3.3 Conclusions and chapter summary
39(1)
3.4 Further reading and relevant resources
40(3)
Chapter 4 Applications
43(10)
4.1 Information extraction
43(1)
4.2 Sentiment analysis and opinion mining
44(2)
4.3 Recognising textual entailment
46(1)
4.4 Machine translation
47(1)
4.5 Information retrieval
48(1)
4.6 Other tasks
49(1)
4.7 Conclusions and chapter summary
50(1)
4.8 Further reading and relevant resources
50(3)
Chapter 5 Resources
53(10)
5.1 Annotated corpora
53(5)
5.2 Tools
58(1)
5.3 Evaluation
59(2)
5.3.1 Evaluation measures for cue identification
60(1)
5.3.2 Evaluation measures for scope resolution
60(1)
5.4 Conclusions and chapter summary
61(1)
5.5 Further reading and relevant resources
62(1)
Chapter 6 Future trends and discussion
63(4)
6.1 Future trends
63(1)
6.2 Discussion
64(1)
6.3 Final remarks
65(2)
Glossary 67(10)
References 77(18)
Subject index 95