Muutke küpsiste eelistusi

E-raamat: Network Coding: Fundamentals and Applications

Edited by (Department of Computing and Electrical Engineering, Texas A&M University, College Station, TX, USA), Edited by (Professor, Electrical Engineering and Computer Science Dept., MIT, Cambridge, MA, USA.)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Oct-2011
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780123809193
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 66,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Oct-2011
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780123809193
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Computer scientists, electrical engineers, and related professionals provide a tutorial introduction and survey of practical applications of network coding in various areas of networking and distributed computing. They write for researchers, practitioners, and graduate students who have a general background in networking but no prior exposure to network coding techniques or applications of network coding. The topics include harnessing network coding in wireless systems, network coding in the real world, network coding and user cooperation for streaming and download services in long term evolution networks, bounds and algorithms for secret and reliable communications, and network coding in disruption tolerant networks. Academic Press is an imprint of Elsevier. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

Arvustused

"Computer scientists, electrical engineers, and related professionals provide a tutorial introduction and survey of practical applications of network coding in various areas of networking and distributed computing. They write for researchers, practitioners, and graduate students who have a general background in networking but no prior exposure to network coding techniques or applications of network coding. The topics include harnessing network coding in wireless systems, network coding in the real world, network coding and user cooperation for streaming and download services in long term evolution networks, bounds and algorithms for secret and reliable communications, and network coding in disruption tolerant networks. Academic Press is an imprint of Elsevier." --Reference and Research Book News, October 2012

Muu info

Learn how to attain the maximum possible information flow in a network.
Preface xiii
Acknowledgments xvii
About the Editors xix
List of Contributors xxi
List of Figures xxiii
List of Tables xxxi
1 An Introduction to Network Coding 1(38)
Frank R. Kschischang
1 The Butterfly Networks
2(4)
2 Graphs and Networks
6(3)
2.1 Combinational Packet Networks
6(2)
2.2 Network Information Flow Problems
8(1)
3 The Single-Source Multicast Problem
9(7)
3.1 Multicast Capacity
9(1)
3.2 Linear Network Coding
10(3)
3.3 Linear Network Coding Achieves Multicast Capacity
13(3)
4 Construction of Network Codes for Multicasting
16(5)
4.1 The Linear Information Flow Algorithm
16(4)
4.2 Random Construction
20(1)
5 Coding versus Routing
21(3)
6 Noncoherent Network Coding
24(2)
6.1 Transmission with Packet Headers
24(1)
6.2 Subspace Transmission
25(1)
7 On Alphabets and Nonlinearity
26(3)
8 Conclusions
29(1)
Acknowledgments
29(1)
Appendix
29(7)
A Finite Fields
29(3)
B Zeros and Nonzeros of Polynomials
32(3)
C The Degree of det(G1)
35(1)
References
36(3)
2 Harnessing Network Coding in Wireless Systems 39(22)
Dina Katabi
Sachin Katti
Hariharan Rahul
1 Introduction
40(1)
2 Network Coding Background: The Practitioner's Perspective
41(3)
3 Applications of Network Coding in Wireless Networks
44(15)
3.1 COPE: Network Coding for Increased Throughput
44(5)
3.1.1 The Protocol
45(3)
3.1.2 Performance Results
48(1)
3.2 MORE: Network Coding for Increased Reliability
49(5)
3.2.1 Example 1: Dead Spots
50(2)
3.2.2 Example 2: Multicast
52(1)
3.2.3 The Protocol
52(1)
3.2.4 Empirical Results
53(1)
3.3 Analog Network Coding: Embracing Wireless Inference
54(8)
3.3.1 The ANC Decoder
58(1)
4 Conclusion
59(1)
References
59(2)
3 Network Coding for Content Distribution and Multimedia Streaming in Peer-to-Peer Networks 61(26)
Chen Feng
Baochun Li
1 P2P Content Distribution with Network Coding
62(9)
1.1 How can Network Coding be Applied to P2P Content Distribution?
62(2)
1.2 Why is Network Coding Helpful in P2P Content Distribution?
64(1)
1.3 Theoretical Results on P2P Content Distribution with Network Coding
65(5)
1.4 Practical Aspects of P2P Content Distribution with Network Coding
70(1)
2 P2P Multimedia Streaming with Network Coding
71(13)
2.1 How can Network Coding be Applied to P2P Multimedia Streaming?
72(5)
2.1.1 Random Push on a Random Mesh Structure
74(1)
2.1.2 Timely Feedback from Downstream Peers
75(1)
2.1.3 Synchronized Playback and Initial Buffering Delays
76(1)
2.2 Why is Network Coding Helpful in Multimedia Streaming?
77(1)
2.3 Theoretical Results on P2P Multimedia Streaming with Network Coding
78(4)
2.4 Practical Aspects of P2P Multimedia Streaming with Network Coding
82(2)
3 Conclusion
84(1)
References
84(3)
4 Network Coding in the Real World 87(28)
Janus Heide
Morten V. Pedersen
Frank H.P. Fitzek
Torben Larsen
1 Introduction: It's not Rocket Science
87(1)
2 Network Coding for Mobile Phones
88(5)
3 System Components and Design Choices
93(4)
4 Practical Problems
97(2)
5 A Binary Deterministic Approach
99(1)
6 Random Linear Network Coding (RLNC)
100(2)
7 Speeding up RLNC through Optimizations
102(3)
8 Speeding up RLNC through Design
105(2)
9 A Mobile Phone Application with Network Coding
107(3)
10 Pitfalls and Parameters
110(3)
References
113(2)
5 Network Coding and User Cooperation for Streaming and Download Services in LTE Networks 115(26)
Qi Zhang
Janus Heide
Morten V. Pedersen
Frank H.P. Fitzek
Jorma Lilleberg
Kari Rikkinen
1 Introduction
116(4)
2 Raptor Code in eMBMS
120(4)
3 Packet Erasure Pattern
124(2)
4 User Cooperation for Erasure Recovery
126(5)
5 Network Coding Applied in User Cooperation
131(4)
6 Simulation Results
135(3)
7 Conclusion
138(1)
References
139(2)
6 CONCERTO: Experiences with a Real-World MANET System Based on Network Coding 141(42)
Victor Firoiu
Greg Lauer
Brian DeCleene
Soumendra Nanda
1 Introduction
143(3)
1.1 Challenges in Wireless MANETs
143(2)
1.2 The CONCERTO Approach
145(1)
2 CONCERTO Overview
146(2)
3 Network Coding
148(3)
3.1 CONCERTO Network Coding
149(2)
4 Subgraph Construction
151(3)
4.1 Algorithm
151(1)
4.2 Implementation
152(2)
5 Network Coding Transport Protocols
154(6)
5.1 Reliable Transport in MANETs
154(1)
5.2 Forwarding Protocol Architecture
155(2)
5.3 The Master/Slave Architecture of the Net Coding Transport Protocols
157(1)
5.4 The Semi-Reliable Slave Forwarder Algorithm
158(1)
5.5 The Fully-Reliable Slave Forwarder Algorithm
159(1)
6 Network Coding Benefits
160(5)
6.1 Unified Broadcast, Multicast, and Unicast
160(1)
6.2 Robustness to Routing Loops
160(2)
6.3 Robust to Link and Node Failures
162(1)
6.4 Provides Low-Latency Link Layer Coding
162(1)
6.5 Extremely Opportunistic Routing (ExOR)
163(2)
6.5.1 Long Hops
164(1)
6.5.2 Lots of Lossy Links
164(1)
7 Field Experiment Infrastructure
165(4)
7.1 Hardware
166(1)
7.2 Baseline System
166(2)
7.3 Scenario Traffic
168(1)
7.4 Evaluation Methodology
168(1)
8 Experimental Results and Analysis
169(11)
8.1 Experiment Scenarios
169(4)
8.2 Experimental Results
173(7)
8.2.1 Ground Tactical Scenario
173(5)
8.2.2 Air Tactical Scenario Results
178(1)
8.2.3 Tactical Scenario File Transfer Results
179(1)
9 Conclusion and Future Work
180(1)
9.1 Summary
180(1)
9.2 Future Work
181(1)
Acknowledgments
181(1)
References
182(1)
7 Secure Network Coding: Bounds and Algorithms for Secret and Reliable Communications 183(34)
Sidharth Jaggi
Michael Langberg
1 Introduction
184(2)
1.1 Overview of
Chapter
185(1)
2 Model
186(2)
2.1 Threat Model
186(1)
2.2 Network and Code Model
186(2)
3 Eavesdropping Security
188(6)
3.1 The Coherent Case
188(4)
3.2 The Non-Coherent Case
192(2)
4 Jamming Security
194(12)
4.1 The Coherent Case
194(3)
4.2 The Non-Coherent Case
197(5)
4.3 The Cryptographic Setting
202(4)
5 Secret Transmission in Presence of Eavesdropping and Jamming Adversaries
206(3)
5.1 The Coherent Case
206(1)
5.2 The Non-Coherent Case
207(2)
6 Some other Variants
209(1)
7 Discussion
210(1)
Acknowledgments
210(1)
References
210(7)
8 Network Coding and Data Compression 217(18)
Mayank Bakshi
Michelle Effros
Tracey Ho
Muriel Meclard
1 Introduction
218(3)
2 Model and Notation
221(2)
3 Rate Region Properties for General Joint Source-Network Coding
223(2)
4 Capacity Results for Lossless Multicast
225(2)
4.1 No Side Information Scenario
225(1)
4.2 Side Information at Sinks
226(1)
5 Practical Approaches
227(1)
Appendix
228(5)
References
233(2)
9 Scaling Laws with Network Coding 235(32)
Atilla Eryilmaz
Lei Ying
1 Introduction and Basic Setup
236(1)
2 Wireless Broadcast over Lossy Links
237(16)
2.1 Delay Scaling Gains
237(5)
2.2 Extensions
242(6)
2.2.1 Topological Extensions
242(2)
2.2.2 Arrival Dynamics
244(2)
2.2.3 Accounting for Delay Sensitivities of Incoming Traffic
246(2)
2.3 Throughput and Delay Trade-off
248(5)
3 Coding in Large-Scale Mobile ad hoc Networks
253(10)
3.1 An Example: Delay-Throughput Trade-off under an i.i.d. Mobility Model
254(5)
3.2 Extension to Multicast Traffic Flows
259(2)
3.3 Summary of Existing Results
261(2)
4 Conclusion
263(1)
References
264(3)
10 Network Coding in Disruption Tolerant Networks 267(42)
Xiaolan Zhang
Giovanni Neglia
Jim Kurose
1 Introduction
268(2)
2 Background on Disruption Tolerant Networks and Random Linear Coding
270(6)
2.1 Network Model
271(1)
2.2 DTN Routing Schemes Overview
272(2)
2.2.1 DTN Broadcast Routing Schemes
272(1)
2.2.2 DTN Unicast Routing Schemes
273(1)
2.3 Random Linear Coding
274(2)
3 Design Space
276(3)
4 Coding Benefits for Broadcast Communication
279(4)
4.1 Coding Benefits in Energy Efficiency
280(1)
4.2 Practical RLC Broadcast Scheme
281(2)
5 Coding Benefits for Unicast Applications
283(20)
5.1 Network Coding Reduces Block Delivery Delay
284(7)
5.1.1 Minimum Block Delivery Delay
284(3)
5.1.2 Probability to Achieve Minimum Block Delivery Delay
287(3)
5.1.3 Other Metrics
290(1)
5.2 Network Coding Improves Delay vs. Transmission Number Trade-off
291(3)
5.3 Discussion about RLC Benefits
294(4)
5.3.1 Impact of Different Bandwidth and Buffer Constraints
294(2)
5.3.2 Impact of Generation Management
296(1)
5.3.3 Impact of Control Signaling
296(2)
5.4 Modeling Studies of Network Coding Scheme
298(3)
5.5 Other Works on an RLC Scheme in Unicast Application
301(2)
5.5.1 Priority Coding Protocol
301(1)
5.5.2 Optimal Control of a Two-Hop Scheme
302(1)
5.5.3 Network Coding Based Secure Communication for DTN
302(1)
6 Open Issues
303(2)
6.1 RLC Benefits for Application with Short Messages
303(1)
6.2 An RLC Scheme for Multicast Communication
304(1)
7 Summary and Conclusions
305(1)
References
305(4)
Index 309