Muutke küpsiste eelistusi

E-raamat: Network Data Analytics: A Hands-On Approach for Application Development

  • Formaat - EPUB+DRM
  • Hind: 98,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of data analytics, covering the different types of analytics and the basics of using Hadoop as a tool, it focuses on different Hadoop ecosystem tools, like Apache Flume, Apache Spark, Apache Storm, Apache Hive, R, and Python, which can be used for different types of analytic. It then examines the different machine learning techniques that are useful for data analytics, and how to visualize data with different graphs and charts.
 
Presenting data analytics from a practice-oriented viewpoint, the book discusses useful tools and approaches for data analytics, supported by concrete code examples. The book is a valuable reference resource for graduate students and professionals in related fields, and is also of interest to general readers with an understanding of data analytics.

Part I: Data Analytics and Hadoop.
Chapter
1. Introduction to Data Analytics.
Chapter
2. Introduction to Hadoop.
Chapter
3. Data Analytics with Map Reduce.- Part II: Tools for Data Analytics.
Chapter
4. Apache Pig.
Chapter
5. Apache Hive.
Chapter
6. Apache Spark.
Chapter
7. Apache Flume.
Chapter
8. Apache Storm.
Chapter
9. Python R.- Part III: Machine Learning for Data Analytics.
Chapter
10. Basics of Machine Learning.
Chapter
11. Linear Regression.
Chapter
12. Logistic Regression.
Chapter
13. Machine Learning on Spark.- Part IV: Exploring and Visualizing Data.
Chapter
14. Introduction to Visualization.
Chapter
15. Principles of Data Visualization.
Chapter
16. Visualization Charts.
Chapter
17. Popular Visualization Tools.
Chapter
18. Data Visualization with Hadoop.- Part V: Case Studies.
Chapter
19. Product Recommendation.
Chapter
20. Market Basket Analysis.
Dr. Krishnarajanagar GopalaIyengar Srinivasa is an associate professor and the head of the Department of IT at C.B.P. Government Engineering College, Jaffarpur, New Delhi, India. His other publications include the Springer book Guide to High Performance Distributed Computing. Dr. Gaddadevara Matt Siddesh is an associate professor at the Department of Information Science and Engineering at Ramaiah Institute of Technology, Bangalore, India. Srinidhi Hiriyannaiah is an assistant professor at the Department of Computer Science and Engineering at Ramaiah Institute of Technology, Bangalore, India.