Muutke küpsiste eelistusi

E-raamat: Neural Information Processing: 30th International Conference, ICONIP 2023, Changsha, China, November 20-23, 2023, Proceedings, Part XV

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 92,01 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The nine-volume set constitutes the refereed proceedings of the 30th International Conference on Neural Information Processing, ICONIP 2023, held in Changsha, China, in November 2023.  

The 1274 papers presented in the proceedings set were carefully reviewed and selected from 652 submissions. 

The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements.
Applications.- Towards Deeper and Better Multi-view Feature Fusion for
3D Semantic Segmentation.- RF-Based Drone Detection and Identification with
Deep Neural Network: Review and Case Study.- Effective skill learning on
vascular robotic systems: Combining offline and online reinforcement
learning.- Exploring Efficient-Tuned Learning Audio Representation Method
from BriVL.- Can You Really Reason: A Novel Framework for Assessing Natural
Language Reasoning Datasets and Models.- End-to-End Urban Autonomous
Navigation with Decision Hindsight.- Identifying Self-Admitted Technical Debt
with Context-based Ladder Network.- NDGR: A Noise Divide and Guided
Re-labeling Framework for Distantly Supervised Relation
Extraction.- Customized Anchors Can Better Fit the Target in Siamese
Tracking.- Can We Transfer Noise Patterns? A Multi-environment Spectrum
Analysis Model Using Generated Cases.- Progressive Supervision for Tampering
Localization in Document Images.- Multi-granularity Deep Vulnerability
Detection using Graph Neural Networks.- Rumor Detection with Supervised Graph
Contrastive Regularization.- A Meta Learning-based Training Algorithm for
Robust Dialogue Generation.- Effects of Brightness and Class-unbalanced
Dataset on CNN Model Selection and Image Classification considering
Autonomous Driving.- HANCaps: A Two-Channel Deep Learning Framework for Fake
News Detection in Thai.- Pre-trained Financial Model for Price Movement
Forecasting.- Impulsion of Movies Content-Based Factors in Multi-Modal Movie
Recommendation System.- Improving Transferbility of Adversarial Attack on
Face Recognition with Feature Attention.- Dendritic Neural Regression Model
Trained by Chicken Swarm Optimization Algorithm for Bank Customer Churn
Prediction.- BERT-LBIA: A BERT-Based Late Bidirectional Interaction Attention
Model for Legal Case Retrieval.- Learning Discriminative Semantic and
Multi-View Context for Domain Adaptive Few-shot Relation
Extraction.- ML2FNet: A Simple but Effective Multi-Level Feature Fusion
Network for Document-Level Relation Extraction.- Implicit Clothed Human
Reconstruction Based on Self-attention and SDF.- Privacy-Preserving Federated
Compressed Learning Against Data Reconstruction Attacks Based on Secure
Data.- An Attack Entity Deducing Model for Attack Forensics.- Semi-supervised
classification on data streams with recurring concept drift based on
conformal prediction.- Zero-shot Relation Triplet Extraction via
Retrieval-Augmented Synthetic Data Generation.- Parallelizable Simple
Recurrent Units with Hierarchical Memory.- Enhancing Legal Judgment
Prediction with Attentional Networks Utilizing Legal Event Types.- MOOCs
Dropout Prediction via Classmates Augmented Time-Flow Hybrid
Network.- Multiclass Classification and Defect Detection of Steel tube using
modified YOLO.- GACE: Learning Graph-Based Cross-Page Ads Embedding For
Click-Through Rate Prediction.- TEZARNet : TEmporal Zero-shot Activity
Recognition Network.- Tigrinya OCR: Applying CRNN for Text
Recognition.- Generating Pseudo-Labels for Car Damage Segmentation using Deep
Spectral Method.- Two-Stage Graph Convolutional Networks for Relation
Extraction.- Multi-vehicle Platoon Overtaking Using NoisyNet Multi-Agent Deep
Q-Learning Network.