Muutke küpsiste eelistusi

E-raamat: Neural Network Control Of Robot Manipulators And Non-Linear Systems

(Caterpillar Inc., Mossville, Illinois, USA), ,
  • Formaat - PDF+DRM
  • Hind: 299,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A graduate text providing an account of neural network (NN) controllers for robotics and nonlinear systems, offering a general and streamlined design procedure for NN controllers. Provides a background to NNs, dynamical systems, and control, then introduces the robot control problem and standard techniques such as torque, and adaptive and robust control. Gives design techniques and stability proofs for NN controllers for robot arms, practical robotic systems with high frequency vibratory modes, force control, and a general class of nonlinear systems. Concludes with a discussion of discrete-time NN controllers. Includes chapter problems. Lewis is affiliated with the University of Texas at Arlington's Automation and Robotics Research Institute. Annotation c. Book News, Inc., Portland, OR (booknews.com)

There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics.
The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.
List of Tables of Design Equations
xi
List of Figures
xviii
Series Introduction xix
Preface xxi
Background on Neural Networks
1(66)
Neural Network Topologies and Recall
2(22)
Neuron Mathematical Model
2(5)
Multilayer Perceptron
7(3)
Linear-in-the-Parameter (LIP) Neural Nets
10(4)
Dynamic Neural Networks
14(10)
Properties of Neural Networks
24(8)
Classification, Association, and Pattern Recognition
25(5)
Function Approximation
30(2)
Neural Network Weight Selection and Training
32(28)
Direct Computation of the Weights
33(2)
Training the One-Layer Neural Network--- Gradient Descent
35(8)
Training the Multilayer Neural Network--- Backpropagation Tuning
43(10)
Improvements on Gradient Descent
53(3)
Hebbian Tuning
56(1)
Continuous-Time Tuning
57(3)
References
60(3)
Problems
63(4)
Background on Dynamic Systems
67(56)
Dynamical Systems
67(8)
Continous-Time Systems
68(3)
Discrete-Time Systems
71(4)
Some Mathematical Background
75(2)
Vector and Matrix Norms
75(1)
Continuity and Function Norms
76(1)
Properties of Dynamical Systems
77(9)
Stability
78(2)
Passivity
80(3)
Observability and Controllability
83(3)
Feedback Linearization and Control System Design
86(11)
Input-Output Feedback Linearization Controllers
87(5)
Computer Simulation of Feedback Control Systems
92(4)
Feedback Linearization for Discrete-Time Systems
96(1)
Nonlinear Stability Analysis and Controls Design
97(18)
Lyapunov Analysis for Autonomous Systems
97(6)
Controller Design Using Lyapunov Techniques
103(3)
Lyapunov Analysis for Non-Autonomous Systems
106(3)
Extensions of Lyapunov Techniques and Bounded Stability
109(6)
References
115(1)
Problems
116(7)
Robot Dynamics and Control
123(50)
Commercial Robot Controllers
123(1)
Kinematics and Jacobians
124(5)
Kinematics of Rigid Serial-Link Manipulators
125(3)
Robot Jacobians
128(1)
Robot Dynamics and Properties
129(7)
Joint Space Dynamics and Properties
130(4)
State Variable Representations
134(1)
Cartesian Dynamics and Actuator Dynamics
135(1)
Computed-Torque (CT) Control and Computer Simulation
136(11)
Computed-Torque (CT) Control
136(2)
Computer Simulation of Robot Controllers
138(5)
Approximate Computed-Torque Control and Classical Joint Control
143(2)
Digital Control
145(2)
Filtered-Error Approximation-Based Control
147(20)
A General Controller Design Framework Based on Approximation
154(2)
Computed-Torque Control Variant
156(1)
Adaptive Control
156(6)
Robust Control
162(3)
Learning Control
165(2)
Conclusions
167(1)
References
168(1)
Problems
169(4)
Neural Network Robot Control
173(48)
Robot Arm Dynamics and Tracking Error Dynamics
176(3)
One-Layer Functional-Link Neural Network Controller
179(12)
Approximation by One-Layer Functional-Link NN
180(1)
NN Controller and Error System Dynamics
181(1)
Unsupervised Backpropagation Weight Tuning
182(5)
Augmented Unsupervised Backpropagation Tuning--- Removing the PE Condition
187(3)
Functional-Link NN Controller Design and Simulation Example
190(1)
Two-Layer Neural Network Controller
191(15)
NN Approximation and the Nonlinearity in the Parameters Problem
194(2)
Controller Structure and Error System Dynamics
196(2)
Weight Updates for Guaranteed Tracking Performance
198(8)
Two-Layer NN Controller Design and Simulation Example
206(1)
Partitioned NN and Signal Preprocessing
206(6)
Partitioned NN
206(3)
Preprocessing of Neural Net Inputs
209(1)
Selection of a Basis Set for the Functional-Link NN
209(3)
Passivity Properties of NN Controllers
212(4)
Passivity of the Tracking Error Dynamics
212(1)
Passivity Properties of NN Controllers
213(3)
Conclusions
216(1)
References
217(2)
Problems
219(2)
Neural Network Robot Control: Applications and Extensions
221(56)
Force Control Using Neural Networks
222(11)
Force Constrained Motion and Error Dynamics
223(2)
Neural Network Hybrid Position/Force Controller
225(7)
Design Example for NN Hybrid Position/Force Controller
232(1)
Robot Manipulators with Link Flexibility, Motor Dynamics, and Joint Flexibility
233(12)
Flexible-Link Robot Arms
233(5)
Robots with Actuators and Compliant Drive Train Coupling
238(6)
Rigid-Link Electrically-Driven (RLED) Robot Arms
244(1)
Singular Perturbation Design
245(13)
Two-Time-Scale Controller Design
246(3)
NN Controller for Flexible-Link Robot Using Singular Perturbations
249(9)
Backstepping Design
258(9)
Backstepping Design
258(4)
NN Controller for Rigid-Link Electrically-Driven Robot Using Backstepping
262(5)
Conclusions
267(3)
References
270(2)
Problems
272(5)
Neural Network Control of Nonlinear Systems
277(28)
System and Tracking Error Dynamics
278(3)
Tracking Controller and Error Dynamics
279(2)
Well-Defined Control Problem
281(1)
Case of Known Function g(x)
281(6)
Proposed NN Controller
282(1)
NN Weight Tuning for Tracking Stability
283(3)
Illustrative Simulation Example
286(1)
Case of Unknown Function g(x)
287(14)
Proposed NN Controller
287(2)
NN Weight Tuning for Tracking Stability
289(7)
Illustrative Simulation Examples
296(5)
Conclusions
301(2)
References
303(2)
NN Control with Discrete-Time Tuning
305(54)
Background and Error Dynamics
306(4)
Neural Network Approximation Property
306(2)
Stability of Systems
308(1)
Tracking Error Dynamics for a Class of Nonlinear Systems
308(2)
One-Layer Neural Network Controller Design
310(17)
Structure of the One-layer NN Controller and Error System Dynamics
311(1)
One-layer Neural Network Weight Updates
312(4)
Projection Algorithm
316(5)
Ideal Case: No Disturbances or NN Reconstruction Errors
321(1)
One-layer Neural Network Weight Tuning Modification for Relaxation of Persistency of Excitation Condition
321(6)
Multilayer Neural Network Controller Design
327(23)
Structure of the NN Controller and Error System Dynamics
330(1)
Multilayer Neural Network Weight Updates
331(7)
Projection Algorithm
338(2)
Multilayer Neural Network Weight Tuning Modification for Relaxation of Persistency of Excitation Condition
340(10)
Passivity Properties of The NN
350(4)
Passivity Properties of the Tracking Error System
350(2)
Passivity Properties of One-layer Neural Networks and the Closed-Loop System
352(1)
Passivity Properties of Multilayer Neural Networks
353(1)
Conclusions
354(1)
References
354(2)
Problems
356(3)
Discrete-Time Feedback Linearization by Neural Networks
359(54)
System Dynamics and the Tracking Problem
360(2)
Tracking Error Dynamics for a Class of Nonlinear Systems
360(2)
NN Controller Design for Feedback Linearization
362(5)
NN Approximation of Unknown Functions
363(1)
Error System Dynamics
364(2)
Well-Defined Control Problem
366(1)
Proposed Controller
367(1)
Single-Layer NN for Feedback Linearization
367(16)
Weight Updates Requiring Persistence of Excitation
368(7)
Projection Algorithm
375(1)
Weight Updates not Requiring Persistence of Excitation
376(7)
Multilayer Neural Networks for Feedback Linearization
383(19)
Weight Updates Requiring Persistence of Excitation
384(6)
Weight Updates not Requiring Persistence of Excitation
390(12)
Passivity Properties of the NN
402(7)
Passivity Properties of the Tracking Error System
405(1)
Passivity Properties of One-layer Neural Network Controllers
406(1)
Passivity Properties of Multilayer Neural Network Controllers
407(2)
Conclusions
409(1)
References
409(2)
Problems
411(2)
State Estimation Using Discrete-Time Neural Networks
413
Identification of Nonlinear Dynamical Systems
415
Identifier Dynamics for Mimo Systems
415
Multilayer Neural Network Identifier Design
418
Structure of the NN Controller and Error System Dynamics
418
Three-Layer Neural Network Weight Updates
420
Passivity Properties of the NN
425
Simulation Results
427
Conclusions
428
References
428
Problems
430
F W Lewis (Author) , S. Jagannathan (Author) , A Yesildirak (Author)