Muutke küpsiste eelistusi

E-raamat: Neural Networks and Speech Processing

  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

We would like to take this opportunity to thank all of those individ­ uals who helped us assemble this text, including the people of Lockheed Sanders and Nestor, Inc., whose encouragement and support were greatly appreciated. In addition, we would like to thank the members of the Lab­ oratory for Engineering Man-Machine Systems (LEMS) and the Center for Neural Science at Brown University for their frequent and helpful discussions on a number of topics discussed in this text. Although we both attended Brown from 1983 to 1985, and had offices in the same building, it is surprising that we did not meet until 1988. We also wish to thank Kluwer Academic Publishers for their profes­ sionalism and patience, and the reviewers for their constructive criticism. Thanks to John McCarthy for performing the final proof, and to John Adcock, Chip Bachmann, Deborah Farrow, Nathan Intrator, Michael Perrone, Ed Real, Lance Riek and Paul Zemany for their comments and assistance. We would also like to thank Khrisna Nathan, our most unbi­ ased and critical reviewer, for his suggestions for improving the content and accuracy of this text. A special thanks goes to Steve Hoffman, who was instrumental in helping us perform the experiments described in Chapter 9.

Muu info

Springer Book Archives
1 Introduction.- 1.1 Motivation.- 1.2 A Few Words on Speech
Recognition.- 1.3 A Few Words on Neural Networks.- 1.4 Contents.- 2 The
Mammalian Auditory System.- 2.1 Introduction to Auditory Processing.- 2.2 The
Anatomy and Physiology of Neurons.- 2.3 Neuroanatomy of the Auditory System.-
2.4 Recurrent Connectivity in the Auditory Pathway.- 2.5 Summary.- 3 An
Artificial Neural Network Primer.- 3.1 A Neural Network Primer for Speech
Scientists.- 3.2 Elements of Artificial Neural Networks.- 3.3 Learning in
Neural Networks.- 3.4 Supervised Learning.- 3.5 Multi-Layer Networks.- 3.6
Unsupervised Learning.- 3.7 Summary.- 4 A Speech Technology Primer.- 4.1 A
Speech Primer for Neural Scientists.- 4.2 Human Speech
Production/Perception.- 4.3 ASR Technology.- 4.4 Signal Processing and
Feature Extraction.- 4.5 Time Alignment and Pattern Matching.- 4.6 Language
Models.- 4.7 Summary.- 5 Methods in Neural Network Applications.- 5.1 The
Allure of Neural Networks for Speech Processing.- 5.2 The Computational
Properties of ANNs.- 5.3 ANN Limitations: The Scaling Problem.- 5.4
Structured ANN Solutions.- 5.5 Summary.- 6 Signal Processing and Feature
Extraction.- 6.1 The Importance of Signal Representations.- 6.2 The Signal
Processing Problem Domain.- 6.3 Biologically Motivated Signal Processing.-
6.4 ANNs for Conventional Signal Processing.- 6.5 Feature Representations.-
6.6 Summary.- 7 Time Alignment and Pattern Matching.- 7.1 Modeling
Spectro-Temporal Structure.- 7.2 Time Normalization Via Pre-Processing.- 7.3
The Dynamic Programming Neural Network.- 7.4 HMM Motivated Networks.- 7.5
Recurrent Networks for Temporal Modeling.- 7.6 The Time Delay Neural
Network.- 7.7 Summary.- 8 Natural Language Processing.- 8.1 The Importance of
Language Processing.- 8.2 Syntactic Models.- 8.3 Semantic Models.- 8.4
Knowledge Representation.- 8.5 Summary.- 9 ANN Keyword Recognition.- 9.1
Keyword Spotting.- 9.2 The Primary KWS System.- 9.3 DUR Experiments.- 9.4
Secondary Processing Experiments.- 9.5 Summary.- 10 Neural Networks and
Speech Processing.- 10.1 Speech Processing Applications.- 10.2 Summary of
Efforts in ASR.- 10.3 Concluding Remarks.