Muutke küpsiste eelistusi

E-raamat: Neural Networks in Transport Applications

Edited by , Edited by , Edited by (Alexandru Ioan Casu University, Iasi, Romania . JADS, s-Hertogenbosch, The Netherlands . Adam Mickiewicz University, Poznan, Poland.)
  • Formaat: 381 pages
  • Sari: Routledge Revivals
  • Ilmumisaeg: 09-Jul-2019
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9780429817649
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 29,89 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 381 pages
  • Sari: Routledge Revivals
  • Ilmumisaeg: 09-Jul-2019
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9780429817649
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

First published in 1998, this volume enters the debate on human behaviour in the form of neural networks in a spatial context. As most transportation research techniques had been developed in the 1960s and 1970s, these authors sought to bring that research into the modern era. Featuring 17 articles from 37 contributors, it begins with an overview and proceeds to examine aspects of travel behaviour, traffic flow and traffic management.

Part A. Overview.
1. Computational Neural Networks: An Attractive Class
of Mathematical Models for Transportation Research. M.M. Fischer.
2. Neural
Network: An Overview and Applications in the Space Economy. A. Reggiani, R.
Romanelli, T. Tritapepe and P. Nijkamp. Part B. Travel Behaviour.
3. Analysis
of Performance of Backpropagation ANN with Different Training Parameters. A.
Faghri and A. Sandeep.
4. Daily Travelling Viewed by Self-Organizing Maps. V.
Himanen, T. Järvi-Nykänen and J. Raitio.
5. Neural Network and Logit Models
Applied to Commuters Mobility in The Metropolitan Area of Milan. A. Reggiani
and T. Tritapepe.
6. Neural Networks as Adaptive Logit Models. L.A. Schintler
and O. Olurotimi.
7. Neural Network Analysis of Travel Behaviour. D. Shmueli,
I. Salomon and D. Shefer.
8. A Methodology for Modelling Driver Behaviour in
Signalized Urban Intersections Using Artificial Neural Networks. L. Mussone,
G. Reitani and S. Rinelli. Part C. Traffic Flow.
9. A New Traffic Light
Single Junction Control System Implemented by a Symbolic Neural Network. E.
Burattini, M. de Gragorio and G. Improta.
10. Exploring Traffic Systems by
Elasticity Analysis of Neural Networks. M. Dougherty.
11. Factors Influencing
the Performance of a Neural Network Driver Decision Model: A Case Study Using
Simulated Data. G.D. Lyons, J.G. Hunt and S.Y. Yousif.
12. Neural Network
Models Applied to Traffic Flow Problems. T. Nakatsuji and S. Shibuya.
13. Two
Dimensional Estimation of Speed Flow Relationships with Backpropagation
Neural Networks. M. Pursula. Part D. Traffic Management.
14. The Application
of Fuzzy Multiobjective and Artificial Neural Networks on Urban Public
Transport Equilibrium. Y. Chang and C.C. Shen.
15. The Impact of Data
Quantity on the Performance of Neural Network Freeway Incident Detection
Models. D. Hussein and G. Rose.
16. Predicting Parking Characteristics: the
Use of Neural Networks to Support Parking Management. M. Kontaratos, T.
Tillis and K. Kleanthous.
17. Travel Time Prediction for Freeway Traffic
Information by Neural Network Driven Fuzzy Reasoning. H. Matsui and M. Fujita.
Himanen, Veli; Nijkamp, Peter; Reggiani, Aura