Muutke küpsiste eelistusi

E-raamat: Neural-Symbolic Learning Systems: Foundations and Applications

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial intelligence.
This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications.
Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems.

Muu info

Springer Book Archives
Introduction and Overview
1(12)
Why Integrate Neurons and Symbols?
1(2)
Strategies of Neural-Symbolic Integration
3(2)
Neural-Symbolic Learning Systems
5(2)
A Simple Example
7(3)
How to Read this Book
10(2)
Summary
12(1)
Background
13(30)
General Preliminaries
13(1)
Inductive Learning
14(1)
Neural Networks
15(8)
Architectures
16(3)
Learning Strategy
19(2)
Recurrent Networks
21(2)
Logic Programming
23(6)
What is Logic Programming?
23(3)
Fixpoints and Definite Programs
26(3)
Nonmonotonic Reasoning
29(5)
Stable Models and Acceptable Programs
29(5)
Belief Revision
34(9)
Truth Maintenance Systems
37(2)
Compromise Revision
39(4)
Part I. Knowledge Refinement in Neural Networks
Theory Refinement in Neural Networks
43(44)
Inserting Background Knowledge
44(12)
Massively Parallel Deduction
56(2)
Performing Inductive Learning
58(1)
Adding Classical Negation
59(5)
Adding Metalevel Priorities
64(20)
Summary and Further Reading
84(3)
Experiments on Theory Refinement
87(26)
DNA Sequence Analysis
87(10)
Power Systems Fault Diagnosis
97(9)
Discussion
106(2)
Appendix
108(5)
Part II. Knowledge Extraction from Neural Networks
Knowledge Extraction from Trained Networks
113(46)
The Extraction Problem
114(6)
The Case of Regular Networks
120(17)
Positive Networks
121(6)
Regular Networks
127(10)
The General Case Extraction
137(16)
Regular Subnetworks
138(1)
Knowledge Extraction from Subnetworks
139(12)
Assembling the Final Rule Set
151(2)
Knowledge Representation Issues
153(2)
Summary and Further Reading
155(4)
Experiments on Knowledge Extraction
159(24)
Implementation
159(7)
The Monk's Problems
166(2)
DNA Sequence Analysis
168(5)
Power Systems Fault Diagnosis
173(3)
Discussion
176(7)
Part III. Knowledge Revision in Neural Networks
Handling Inconsistencies in Neural Networks
183(26)
Theory Revision in Neural Networks
183(9)
The Equivalence with Truth Maintenance Systems
184(2)
Minimal Learning
186(6)
Solving Inconsistencies in Neural Networks
192(15)
Compromise Revision
194(1)
Foundational Revision
195(5)
Nonmonotonic Theory Revision
200(7)
Summary of the
Chapter
207(2)
Experiments on Handling Inconsistencies
209(26)
Requirements Specifications Evolution as Theory Refinement
209(6)
Analysing Specifications
209(3)
Revising Specifications
212(3)
The Automobile Cruise Control System
215(13)
Knowledge Insertion
217(2)
Knowledge Revision: Handling Inconsistencies
219(4)
Knowledge Extraction
223(5)
Discussion
228(2)
Appendix
230(5)
Neural-Symbolic Integration: The Road Ahead
235(18)
Knowledge Extraction
237(3)
Adding Disjunctive Information
240(4)
Extension to the First-Order Case
244(1)
Adding Modalities
245(2)
New Preference Relations
247(2)
A Proof Theoretical Approach
249(1)
The ``Forbidden Zone'' [ Amax, Amin]
250(1)
Acceptable Programs and Neural Networks
250(2)
Epilogue
252(1)
References 253(14)
Index 267