Muutke küpsiste eelistusi

E-raamat: Neutral-atom Astronomy: Plasma Diagnostics From The Aurora To The Interstellar Medium

(Univ Of New Hampshire, Usa), (Univ Of Arizona, Usa)
  • Formaat: 328 pages
  • Sari: Advances In Planetary Science 7
  • Ilmumisaeg: 20-May-2022
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813279216
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 87,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 328 pages
  • Sari: Advances In Planetary Science 7
  • Ilmumisaeg: 20-May-2022
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813279216
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Astronomy has been associated with the detection of electromagnetic waves or photons from within and beyond the solar system, ranging from Radio to Gamma-ray Astronomy. Particle Astrophysics, including Neutrino and Dark-Matter Astrophysics today, started with the discovery of cosmic rays in 1911. The Space Age expanded particle observations to in-situ studies of lower energy electrons and ions with a variety of charge states in space plasmas traversed by spacecraft. Remote observation of space plasmas became possible only after the discovery of energetic neutral atoms (ENAs) in space in 1950.This book is a primer for those who wish to learn more about the origins of ENAs, related detection techniques, and how ENA images and spectra can be used to study space plasmas beyond the reach of spacecraft. It tells a comprehensive story from the first encounters with ENAs in the Earth's magnetosphere to Neutral-Atom Astronomy of the edge of the heliosphere and the interstellar medium. This story includes how ion mass spectrographs evolved into ENA imagers, overcoming the technical challenges, how to extract information from ENA data, and a variety of diagnostic applications on the magnetosphere, interplanetary space, other solar-system objects, the heliospheric boundary, the local interstellar medium, and a glimpse into the future of Neutral-Atom Astronomy.The authors hope to inform and inspire readers to further enrich this field of study.
Preface vii
List of Tables
xvii
List of Figures
xix
List of Acronyms
xxix
Symbols and Units for Useful Quantities xxxiii
Chapter 1 Introduction
1(18)
1.1 Members of the Cast
2(3)
1.2 Earth's Magnetosphere
5(5)
1.2.1 Earth's exosphere
8(2)
1.3 The Heliosphere
10(9)
1.3.1 The interstellar neutral-atom flow in the heliosphere
11(1)
1.3.2 Global view of the heliospheric boundary with ENAs
11(2)
References
13(6)
Chapter 2 First Encounters with ENAs
19(16)
2.1 The Discovery: From the Telescope to the Accelerator
19(3)
2.2 First Diagnostic Use of ENAs in Space
22(3)
2.3 Invoking ENAs to Explain New Satellite Observations
25(3)
2.4 First ENA Images from Space
28(7)
References
30(5)
Chapter 3 Remote Sensing of Space Plasma Through ENA Observations
35(36)
3.1 ENA "Imaging": Determination of the Spatial, Energy & Elemental Distributions of Remote Ion Populations
36(2)
3.2 Ion Distribution Functions and Plasma Processes
38(7)
3.2.1 Velocity distributions in thermal equilibrium
39(2)
3.2.2 Non-thermal velocity distributions
41(2)
3.2.3 Moving distributions and frame transformations
43(2)
3.3 Relation Between the Observed ENA Flux and the Remote Ion Distribution
45(5)
3.4 Propagation of ENAs and Observational Limits
50(11)
3.4.1 ENA trajectories in gravitational fields
50(3)
3.4.2 Extinction of ENAs from the source to the observer
53(3)
3.4.3 Effects of elastic collisions on the ENA diagnostics
56(2)
3.4.4 PUIs as inevitable companions of ENAs
58(3)
3.5 Summary
61(10)
References
61(10)
Chapter 4 ENA Instrumentation: General
71(36)
4.1 Choosing Vantage Points for ENA Observations
71(6)
4.1.1 Viewing the heliosphere: SOHO and IBEX
72(3)
4.1.2 Viewing Earth's magnetosphere: IMAGE and TWINS
75(2)
4.2 General Considerations for Space-Borne Particle Instruments
77(12)
4.2.1 Particle selection by analyzers
80(1)
4.2.2 Particle detectors
81(1)
4.2.2.1 Electron multipliers
81(3)
4.2.2.2 Solid-state detectors
84(2)
4.2.3 Principles of TOF measurements
86(1)
4.2.3.1 Combination of TOF and SSD measurements
87(1)
4.2.3.2 Combination of TOF and ESA measurements
88(1)
4.2.3.3 Intrinsic noise-suppression capability of TOF sensors
88(1)
4.2.3.4 TOF spectrographs for neutral atoms
89(1)
4.3 ENA-Specific Observational Challenges
89(18)
4.3.1 Suppression of charged particles
90(4)
4.3.2 Attenuation of EUV
94(1)
4.3.3 Conversion of ENAs into ions before their analysis
95(1)
4.3.3.1 Conversion of ENAs to positive ions
96(1)
4.3.3.2 Conversion of low-energy ENAs or ANAs to negative ions
97(2)
References
99(8)
Chapter 5 ENA Sensor Implementations
107(44)
5.1 The Road to ENA Instrumentation
107(5)
5.1.1 Common root: two non-ENA instruments of relevance
108(3)
5.1.2 First ENA instrument in space
111(1)
5.2 Non-TOF ENA Sensors
112(8)
5.2.1 The first ANA instrument: GAS on Ulysses
113(3)
5.2.2 ENA sensors with MCP single-pulse detection
116(1)
5.2.3 ENA sensors with SSD single-pulse detection
117(3)
5.3 ENA Spectrographs with TOF Measurement
120(31)
5.3.1 ENA cameras for the 10--200 keV range
120(4)
5.3.2 ENA cameras for the 0.3--20 keV range
124(9)
5.3.3 Neutral atom cameras for the 5--2000 eV range
133(12)
References
145(6)
Chapter 6 ENAs from Magnetospheres and Small Bodies in the Solar System
151(50)
6.1 Earth's Magnetosphere
152(22)
6.1.1 The outer magnetosphere
153(1)
6.1.1.1 The magnetosheath
153(3)
6.1.1.2 The polar cusp
156(1)
6.1.1.3 The magnetotail
157(2)
6.1.2 The inner magnetosphere
159(2)
6.1.2.1 ENA images and their intrinsic challenges
161(2)
6.1.2.2 Deconvolution of ENA images
163(11)
6.2 Magnetospheres and Ionospheres of Other Planets
174(12)
6.2.1 Jupiter and Saturn
175(1)
6.2.1.1 Jupiter seen in ENA images
176(1)
6.2.1.2 Saturn seen in ENA images
177(2)
6.2.2 SW-induced magnetospheres
179(2)
6.2.2.1 ENAs at Mars
181(2)
6.2.2.2 ENAs at Venus
183(3)
6.2.3 Mercury
186(1)
6.3 Small Bodies in the Solar System
186(15)
6.3.1 ENAs from the Moon
187(1)
6.3.2 Smaller bodies and dust
188(2)
References
190(11)
Chapter 7 ENA Diagnostics of the Heliosphere-Interstellar Medium Interaction
201(64)
7.1 Getting Acquainted with the Heliosphere
203(1)
7.2 Interstellar Neutral Wind through the Heliosphere
204(12)
7.2.1 Overview of in-situ diagnostic methods
206(2)
7.2.2 Connecting ISN flow observations with the ISM
208(6)
7.2.3 Observational challenges and opportunities for the ISN flow
214(2)
7.3 The ENA Ribbon, a "Compass" for the Interstellar Magnetic Field
216(15)
7.3.1 Ribbon overview
216(5)
7.3.2 The Secondary-ENA model as likely explanation
221(1)
7.3.2.1 Simplified analytical model
222(4)
7.3.2.2 Tests of the Secondary-ENA model
226(1)
7.3.3 Challenges and opportunities with the ENA Ribbon
227(1)
7.3.3.1 Effectiveness of Ribbon generation and turbulence
228(2)
7.3.3.2 Determination of the interstellar magnetic field
230(1)
7.3.3.3 Reach of the Solar Wind into the ISM
231(1)
7.4 Secondary Interstellar Neutrals
231(9)
7.4.1 Extraction of secondary interstellar neutrals
233(4)
7.4.2 Challenges and opportunities with secondary interstellar neutrals
237(3)
7.5 Globally Distributed ENAs
240(25)
7.5.1 Extraction of the globally distributed ENAs
240(4)
7.5.2 Challenges and opportunities with the GDF of ENAs
244(6)
References
250(15)
Chapter 8 What Have ENAs Revealed and What is Next?
265(8)
8.1 Understanding the Cross-Scale Coupling of the Magnetospheric Systems
266(1)
8.2 Surveying Exposed Surfaces in the Solar System: Planets to Dust
267(1)
8.3 Understanding the Sun-ISM Interactions and Particle Acceleration on Large Scales
268(2)
8.4 Bridging the Temporal and Spatial Divide
270(3)
References
270(3)
Appendix A Geometrical Factor and Angular Response
273(8)
A.1 Geometrical Factor
273(1)
A.2 Angular Response
274(7)
A.2.1 Example of a calibrated angular response
278(1)
A.2.2 Ignoring the angular response, a potential problem
279(1)
References
280(1)
Appendix B ENA-Beam Calibration Facilities
281(4)
B.1 Requirements and General Principles of Operation
281(4)
B.1.1 Neutral-atom beams through physical contact
283(1)
B.1.2 Neutral-atom beams through photo detachment
284(1)
B.1.3 Comparison of different schemes
285(1)
References 285(2)
Index 287