Muutke küpsiste eelistusi

E-raamat: Neutron Crystallography in Structural Biology

Volume editor (University of Leicester, UK)
  • Formaat: EPUB+DRM
  • Sari: Methods in Enzymology
  • Ilmumisaeg: 22-Feb-2020
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128192153
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 188,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Methods in Enzymology
  • Ilmumisaeg: 22-Feb-2020
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128192153
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Neutron Crystallography in Structural Biology, Volume 634, the latest volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Chapters in this updated release include Fundamentals of neutron crystallography, Preparation of deuterated and perdeuterated proteins, Large crystal growth for neutron protein crystallography, Monochromatic - BIODIFF at FRM-II, Quasi-Laue 2 - IMAGINE at HIFER, Qusai-Laue 3 DALI (LADI-IIIB at ILL) -Narrow bandpass, Short wavelength - D19 at ILL, MaNDi at SNS, Current status and near future plan of neutron protein crystallography at J-PARC, and much more.

  • Provides the authority and expertise of leading contributors from an international board of authors
  • Presents the latest release in the Methods in Enzymology series
  • Includes the latest information on neutron crystallography in structural biology

Arvustused

"As one of the first books devoted to this topic, this is a unique resource for structural biologists and students and other trainees interested in this structural probe. It fully meets the high standards of informativeness, breadth and depth of coverage, and clarity of presentation of the Methods in Enzymology series to which it belongs." --Doody

Contributors xi
Preface xvii
1 Fundamentals of neutron crystallography in structural biology
1(20)
John R. Helliwell
1 Introduction
2(2)
2 Basics of neutrons as a diffraction probe
4(5)
3 Types of neutron sources
9(1)
4 Neutron macromolecular crystallography instrument types
9(2)
5 Sample preparation
11(1)
6 Planning an experiment with neutrons
12(1)
7 Measuring your diffraction data
13(1)
8 Refining the molecular model against neutron data
14(1)
9 Validating your model
15(1)
10 Data reuse
16(1)
11 Concluding remarks
16(1)
Acknowledgments
17(1)
References
17(2)
Further reading
19(2)
2 Large crystal growth for neutron protein crystallography
21(26)
Monika Budayova-Spano
Katarina Koruza
Zoe Fisher
1 Introduction
22(2)
2 Crystallization conditions, nucleation, and growth
24(1)
3 Protein solubility and the phase diagram
25(1)
4 Effect of temperature on protein crystallization
26(2)
5 Seeding
28(14)
6 Conclusions
42(1)
Acknowledgments
42(1)
References
42(5)
3 Prospects for membrane protein crystals in NMX
47(22)
Samuel John Hjorth-Jensen
Esko Oksanen
Poul Nissen
Thomas Lykke-Moller Sorensen
1 Introduction
48(2)
2 Microdialysis crystallization
50(5)
3 Capillary counter-diffusion crystallization
55(4)
4 Crystallization of SERCA by microdialysis and capillary counterdiffusion
59(7)
5 Summary
66(1)
Acknowledgment
67(1)
Funding information
67(1)
References
67(2)
4 IMAGINE: The neutron protein crystallography beamline at the high flux isotope reactor
69(18)
Flora Meilleur
Andrey Kovalevsky
Dean A.A. Myles
1 Introduction
70(1)
2 Beamline overview
71(4)
3 Sample preparation and ancillary facilities
75(1)
4 Facility access
76(1)
5 Highlights
77(3)
6 Future development
80(1)
7 Summary
81(1)
Acknowledgments
82(1)
References
82(5)
5 The macromolecular neutron diffractometer at the spallation neutron source
87(14)
Leighton Coates
Brendan Sullivan
1 Introduction
87(4)
2 Auto reduction of diffraction data
91(3)
3 Early science highlights
94(1)
4 Human manganese superoxide dismutase
94(1)
5 Chlorite dismutase
95(2)
6 Toho-1 β-lactamase
97(1)
Acknowledgments
98(1)
References
98(3)
6 Current status and near future plan of neutron protein crystallography at J-PARC
101(24)
Ichiro Tanaka
Toshiyuki Chatake
Satoru Fujiwara
Takaaki Hosoya
Katsuhiro Kusaka
Nobuo Niimura
Taro Yamada
Naomine Yano
1 Introduction
102(1)
2 Ibaraki biological crystal diffractometer, iBIX
103(3)
3 The iBIX detector
106(2)
4 Data processing of time-of-fiight diffraction data
108(3)
5 Large protein crystal growth and structure refinements for neutron protein crystallography
111(2)
6 D/H contrast neutron crystallography at iBIX
113(4)
7 New techniques for the detection of hydrogen at a higher sensitivity and future perspectives for neutron sources
117(4)
8 Conclusion
121(1)
Acknowledgments
121(1)
References
121(4)
7 Neutron macromolecular crystallography at the European spallation source
125(28)
Marton Marko
Gergely Nagy
Giuseppe Aprigliano
Esko Oksanen
1 The European spallation source--Long pulse and high-brilliance moderators
126(2)
2 Implications of the long pulse to instrument design
128(2)
3 The NMX instrument--Design philosophy
130(2)
4 The NMX design
132(14)
5 Data collection strategies and optimizing the use of beam time
146(1)
6 Supporting facilities--Deuteration and large crystal growth
147(1)
7 Expected performance
147(3)
8 Conclusion
150(1)
References
150(3)
8 Dynamic nuclear polarization enhanced neutron crystallography: Amplifying hydrogen in biological crystals
153(24)
Joshua Pierce
Matthew J. Cuneo
Anna Jennings
Le Li
Flora Meilleur
Jinkui Zhao
Dean A.A. Myles
1 Introduction
154(4)
2 Spin polarized neutron diffraction
158(4)
3 Dynamic nuclear polarization
162(3)
4 DNP apparatus and operation
165(1)
5 DNP-NMC: Polarized neutron diffraction
166(3)
6 Future development and perspectives
169(2)
7 Conclusion
171(1)
Acknowledgments
172(1)
References
172(3)
Further reading
175(2)
9 Implementation of the riding hydrogen model in CCTBX to support the next generation of X-ray and neutron joint refinement in Phenix
177(24)
Dorothee Liebschner
Pavel V. Afonine
Alexandre G. Urzhumtsev
Paul D. Adams
1 Introduction
178(3)
2 Parameterizing the riding hydrogen atom model for typical geometrical configurations
181(7)
3 Riding H: Refinement targets and their gradients
188(2)
4 Constructing the riding H model in CCTBX
190(2)
5 Summary
192(1)
Acknowledgments
192(1)
Appendix. Gradient calculation for riding-H atoms
193(4)
References
197(2)
Further reading
199(2)
10 Interactive model building in neutron macromolecular crystallography
201(24)
Derek T. Logan
1 Introduction
202(1)
2 Getting started with model building
203(2)
3 Appearance of nuclear density maps
205(10)
4 Interactive model building of neutron crystal structures in Coot
215(5)
5 Depositing a joint X-ray/neutron structure in the Protein Data Bank
220(1)
6 Visualizing nuclear (and electron) density maps in PyMOL
221(1)
7 Conclusion
222(1)
Acknowledgments
223(1)
References
223(2)
11 What are the current limits on determination of protonation state using neutron macromolecular crystallography?
225(32)
Dorothee Liebschner
Pavel V. Afonine
Nigel W. Moriarty
Paul D. Adams
1 Introduction
226(2)
2 Materials and methods
228(5)
3 Results and discussion
233(17)
4 Summary
250(1)
Acknowledgments
251(1)
References
251(6)
12 Proton transfer and drug binding details revealed in neutron diffraction studies of wild-type and drug resistant HIV-1 protease
257(24)
Andrey Kovalevsky
Oksana Gerlits
Kaira Beltran
Kevin L. Weiss
David A. Keen
Matthew P. Blakeley
John M. Louis
Irene T. Weber
1 Introduction
258(3)
2 Preparation of PR samples
261(3)
3 Analysis of joint XN structures
264(12)
4 Summary
276(1)
Acknowledgments
276(1)
References
277(4)
13 Neutron crystallographic studies of carbonic anhydrase
281(30)
Jacob E. Combs
Jacob T. Andring
Robert McKenna
1 Introduction
282(2)
2 X-ray crystallographic studies of carbonic anhydrase
284(6)
3 Neutron crystallography
290(4)
4 Protocols
294(4)
5 Analysis of neutron structures
298(5)
6 Summary
303(1)
Acknowledgments
304(1)
References
304(5)
Further reading
309(2)
14 Protein kinase A in the neutron beam: Insights for catalysis from directly observing protons
311(22)
Oksana Gerlits
Kevin L. Weiss
Matthew P. Blakeley
Gianluigi Veglia
Susan S. Taylor
Andrey Kovalevsky
1 Introduction
312(3)
2 Protein sample preparation and crystal growth
315(3)
3 Structural analysis
318(10)
4 Summary
328(1)
Acknowledgments
329(1)
References
329(4)
15 Pyridoxal 5'-phosphate dependent reactions: Analyzing the mechanism of aspartate aminotransferase
333(28)
Timothy C. Mueser
Victoria Drago
Andrey Kovalevsky
Steven Dajnowicz
1 Introduction
334(6)
2 Catalytic mechanisms and protonation states
340(5)
3 Preparation of large AAT crystals for neutron diffraction
345(3)
4 Data collection, data processing, and structure refinement for AAT
348(4)
5 Using accurate protonation states for computational chemistry methods
352(4)
References
356(5)
16 The role of hydrogen atoms in redox catalysis by the flavoenzyme cholesterol oxidase
361(18)
Tatiana Kerber
Alice Vrielink
1 Introduction
362(2)
2 Cholesterol oxidase
364(2)
3 Neutron crystallography studies of cholesterol oxidase
366(7)
4 Concluding remarks
373(1)
References
373(6)
17 Heme peroxidase--Trapping intermediates by cryo neutron crystallography
379
Hanna Kwon
Tobias E. Schrader
Andreas Ostermann
Matthew P. Blakeley
Emma L. Raven
Peter C.E. Moody
1 Introduction
379(2)
2 Cryo neutron crystallography
381(1)
3 Heme peroxidases
382(3)
4 Neutron structure of compound I of CcP
385(1)
5 Neutron structure of compound II of APX
386(1)
6 Summary
386(1)
Acknowledgments
387(1)
References
387
Peter Moody is Professor of Structural Biology at Leicester Institute for Structural & Chemical Biology, Department of Molecular & Cell Biology, University of Leicester, UK