Muutke küpsiste eelistusi

E-raamat: Neutron Scattering - Applications in Biology, Chemistry, and Materials Science

Edited by (CEMHTI, Orléans, France), Edited by (Rutherford Appleton Laboratory, Chilton, Didcot, UK)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 232,05 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Neutron Scattering: Applications in Chemistry, Materials Science and Biology provides an in-depth overview of applications of neutron scattering to the fields of physics, materials science, chemistry, biology, the earth sciences, and engineering. The book describes the tremendous advances in instrumental, experimental, and computational techniques over the past quarter-century. Examples include the coming-of-age of neutron reflectivity and spin-echo spectroscopy, the advent of brighter accelerator-based neutron facilities and associated techniques in the United States and Japan over the past decade, and current efforts in Europe to develop long-pulse, ultra-intense spallation neutron sources.

This book complements two earlier volumes in the Experimental Methods in the Physical Sciences series: Neutron Scattering: Fundamentals (Elsevier 2013) and Neutron Scattering: Magnetic and Quantum Phenomena (Elsevier 2015). The set as a whole enables researchers to identify aspects of their work in which neutron scattering techniques might contribute, conceive the important experiments to be done, assess what is required to carry them out, write a successful proposal for one of the major facilities around the globe, and perform the experiments under the guidance of the appropriate instrument scientist.

  • Completes a three-volume set providing extensive coverage of emerging and highly topical applications of neutron scattering
  • Addresses the increasing use of neutrons by chemists, life scientists, and material scientists, in addition to condensed-matter physicists
  • Presents up-to-date reviews of recent results, aimed at enabling readers to identify new opportunities and plan neutron scattering experiments in their own field

Muu info

An authoritative reference covering state-of-the-art applications of neutron scattering across multidisciplines
List of Contributors
xv
Volumes in Series xvii
Preface xxi
Symbols xxv
1 Biological Structures
1(76)
Zoe Fisher
Andrew Jackson
Andrey Kovalevsky
Esko Oksanen
Hanna Wacklin
1.1 Introduction: Neutrons and Biological Structures
2(1)
1.2 Diffraction
3(9)
1.2.1 Macromolecular Crystallography
3(8)
1.2.2 Neutron Fiber Diffraction
11(1)
1.3 Small-Angle Neutron Scattering (SANS)
12(10)
1.3.1 SANS Instrumentation
13(2)
1.3.2 Sample Preparation
15(4)
1.3.3 Data Processing and Analysis
19(3)
1.4 Neutron Reflectometry
22(14)
1.4.1 Specular and Off-Specular Reflection
23(1)
1.4.2 Grazing-Incidence SANS (GISANS)
24(1)
1.4.3 Instruments
25(1)
1.4.4 Experimental Considerations
25(6)
1.4.5 Data Analysis and Refinement
31(5)
1.5 Membrane Diffraction
36(1)
1.5.1 Instruments, Data Collection, and Analysis
37(1)
1.5.2 Experimental Considerations
37(1)
1.6 Deuterium Labeling for Biological Structure Determination
37(8)
1.6.1 Protein Deuteration
38(3)
1.6.2 Biopolymer Deuteration
41(1)
1.6.3 Biomembrane and Small Molecule Deuteration
41(2)
1.6.4 Current and Future Deuteration Facilities
43(2)
1.7 Scientific Highlights
45(20)
1.7.1 Neutron Protein Crystallography
45(7)
1.7.2 Fibre Biomaterials and Structural Biopolymers
52(2)
1.7.3 Protein Solution Structures
54(2)
1.7.4 Membrane Structures and Proteins in Membranes
56(7)
1.7.5 Biomedical Applications and Biomaterials
63(2)
1.8 Future Perspectives
65(12)
References
65(12)
2 Dynamics of Biological Systems
77(58)
Tilo Seydel
2.1 Introduction
78(2)
2.2 Fundamental Aspects and Overview
80(4)
2.2.1 Neutron Spectroscopy Fundamentals to Study Biological Systems
80(1)
2.2.2 Disambiguation of Symbols
81(1)
2.2.3 Collective and Self-Correlation Functions
81(1)
2.2.4 Observable Quantities
82(1)
2.2.5 Past and Present Topics in the Dynamics of Biological Systems
83(1)
2.3 Concepts of Diffusion
84(12)
2.3.1 Diffusion Fundamentals
84(3)
2.3.2 Diffusion in Colloidal Suspensions
87(4)
2.3.3 Diffusion in Confined Geometries
91(2)
2.3.4 Fractional Generalization of the Diffusion Equation
93(3)
2.4 Macromolecules in Aqueous Solutions
96(5)
2.4.1 Center-of-Mass Diffusion
96(2)
2.4.2 Internal Molecular Motions
98(3)
2.5 Numerical Methods: Data Analysis
101(5)
2.5.1 Reducing and Fitting Spectra
101(2)
2.5.2 Modeling of the Solvent Water Contribution
103(1)
2.5.3 Separation of the Rotational and Translational Diffusions
103(2)
2.5.4 Molecular Dynamics Simulations
105(1)
2.6 Spectrometers to Study Biological Dynamics
106(8)
2.6.1 Types of Spectrometers for Biological Dynamics
106(1)
2.6.2 Types of Measurements
107(1)
2.6.3 Recent Advances in Neutron Optics
108(4)
2.6.4 Practical Aspects of Experiments on Biological Samples
112(2)
2.7 Neutron Spectroscopy in the Context of Complementary Methods
114(2)
2.7.1 Dynamic Light Scattering (Visible and X-Ray Photons) and Other Photon Methods
114(1)
2.7.2 Nuclear Magnetic Resonance
115(1)
2.7.3 Fluorescence Correlation Spectroscopy
116(1)
2.8 Applications
116(11)
2.8.1 Proteins as Hydrated Powders
116(2)
2.8.2 Proteins in Solution, Crowding, and Cluster Formation
118(4)
2.8.3 Membrane Vesicles
122(1)
2.8.4 Planar Lipid Membranes
123(1)
2.8.5 Biological Fibers
124(2)
2.8.6 Other Systems
126(1)
2.9 Future Perspectives
127(8)
References
128(7)
3 The Structure of Water and Aqueous Systems
135(78)
Alan K. Soper
3.1 Introduction
136(10)
3.1.1 Water Controversies
137(3)
3.1.2 Water: The Role of Neutron Scattering
140(5)
3.1.3 Scope of This
Chapter: What Is Included and What Is Not Included
145(1)
3.2 The Structure of a Liquid and How It Is Measured
146(17)
3.2.1 The Structure of a Liquid
146(2)
3.2.2 The Molecular Pair Correlation Function
148(2)
3.2.3 The Neutron Total Scattering Experiment
150(7)
3.2.4 How the Scattering Data Are Interpreted
157(6)
3.3 Pure Water Substance
163(16)
3.3.1 A Case Study: Ambient Water
164(5)
3.3.2 Beyond the Site-Site Radial Distribution Functions
169(3)
3.3.3 Water Structure: Effect of Temperature and Pressure
172(7)
3.4 Ionic Solutions
179(11)
3.4.1 The Dissimilar Pair, NaCI and KCI
180(9)
3.4.2 Other Studies of Ions in Water
189(1)
3.5 Microheterogeneity in Aqueous Mixtures
190(8)
3.5.1 A Case Study of Alcohol:Water Mixtures
191(6)
3.5.2 Other Studies
197(1)
3.6 Water at Interfaces
198(7)
3.6.1 MCM-41 Substrate
199(1)
3.6.2 Scattering From MCM-41
200(3)
3.6.3 Using the (100) to Characterize Water in Confinement
203(2)
3.7 Toward Ever Greater Complexity---Some Concluding Remarks
205(8)
References
207(6)
4 Ionic Liquids and Neutron Scattering
213(66)
Olga Russina
Alessandro Triolo
4.1 Introduction
213(5)
4.2 Structure in Ionic Liquids Systems: Microscopic and Mesoscopic Correlations
218(39)
4.2.1 Structure of Neat Compounds
218(13)
4.2.2 Structure of Binary Mixtures Containing Ionic Liquids
231(16)
4.2.3 Macromolecules and Other Large Scale Aggregates Dissolved in ILs
247(10)
4.3 Relaxation Processes in Ionic Liquid Systems
257(12)
4.4 Conclusion and Perspective
269(10)
References
270(9)
5 Catalysis
279(70)
Peter W. Albers
David Lennon
Stewart F. Parker
5.1 Introduction---Why Neutrons for Catalysis?
280(3)
5.2 Experimental
283(6)
5.2.1 Design of Experiments
283(1)
5.2.2 Sampling
284(1)
5.2.3 Cell Design
285(1)
5.2.4 Choice of Complementary Methods
286(1)
5.2.5 Industrial Aspects
287(2)
5.3 Production, Formation and Use of Catalysts
289(10)
5.3.1 Catalyst Supports: Carbons
289(3)
5.3.2 Catalyst Supports: Oxides
292(1)
5.3.3 Fresh Catalysts: Water and OH-Groups
292(4)
5.3.4 Pearlman's Catalyst
296(1)
5.3.5 Catalyst Reduction Step
296(2)
5.3.6 Used Catalysts: Preferential Adsorption
298(1)
5.4 Hydrogenation Catalysts
299(13)
5.4.1 Hydrogen in Supported Nano-Particles
299(5)
5.4.2 Methyls on Pd: Catalyst Deactivation
304(4)
5.4.3 Fuel Cell Catalysts
308(1)
5.4.4 Hydrogenation of Nitriles with Raney® Metals
309(3)
5.5 Catalysts for Commodity Chemicals
312(26)
5.5.1 Methyl Chloride Synthesis
312(7)
5.5.2 Fischer-Tropsch Catalysis
319(5)
5.5.3 Synthesis of Acrylics---Methyl Methacrylate
324(6)
5.5.4 Methanol Synthesis
330(3)
5.5.5 Ammonia Synthesis
333(1)
5.5.6 Hydrogen Storage and Production via Oxyhydrides
334(4)
5.6 Outlook: Experimental Limits and New Perspectives
338(11)
5.6.1 Non-Hydrogenous Adsorbates
338(1)
5.6.2 Operando Spectroscopy
339(1)
5.6.3 Homogeneous Catalysis
340(1)
5.6.4 Conclusions
340(1)
References
341(8)
6 Sorbate Dynamics in Zeolite Catalysts
349(54)
Alexander J. O'Malley
C. Richard
A. Catlow
6.1 Introducing Zeolite Catalysts
349(2)
6.2 Studying Dynamics in Zeolites
351(9)
6.2.1 Studying Molecular Diffusion in Zeolites
351(1)
6.2.2 Quantifying Translational Diffusion
352(5)
6.2.3 Localized Motions in Zeolites
357(3)
6.3 Complementarity Between QENS and MD Simulations
360(4)
6.3.1 Recent Improvements in MD Simulations
361(3)
6.4 Hydrocarbon Behaviour in MFI Zeolites
364(17)
6.4.1 n-Alkane Diffusion in Silicalite and Na-ZSM-5
364(6)
6.4.2 Branched Alkane Diffusion in Silicalite and Na-ZSM-5
370(7)
6.4.3 Localised Hydrocarbon Motions in ZSM-5: Benzene
377(4)
6.5 Hydrocarbon Behaviour in the Faujasite Zeolites
381(10)
6.5.1 Propane Dynamics in NaY
381(6)
6.5.2 Pentane Isomer Dynamics in NaY -- The Levitation Effect
387(4)
6.6 Dynamics of Methanol in Faujasite and MFI Zeolites
391(7)
6.6.1 Localised Motions in ZSM-5
391(3)
6.6.2 Methanol Diffusion in HY
394(4)
6.7 Conclusion
398(5)
Acknowledgments
398(1)
References
398(5)
7 Atomic Quantum Dynamics in Materials Research
403(56)
Carta Andreani
Roberto Senesi
Matthew Krzystyniak
Giovanni Romanelli
Felix Fernandez-Alonso
7.1 Aim and Scope
404(2)
7.2 Conceptual Framework
406(14)
7.2.1 Atoms Are Quantum Objects
406(4)
7.2.2 Epithermal Neutrons Probe the Quantum Character of Atoms
410(4)
7.2.3 Atoms and Their Local Chemical Environment
414(3)
7.2.4 Link to Materials Modeling and Theory
417(3)
7.3 Practice of Spectroscopy With Epithermal Neutrons
420(12)
7.3.1 Anatomy of a Measurement
420(7)
7.3.2 VESUVIO Spectrometer
427(5)
7.4 Whetting Your Appetite for More: Case Studies
432(14)
7.4.1 From Order to Disorder in Water
432(3)
7.4.2 Molecular Intercalation in Nanostructured Media
435(5)
7.4.3 Beyond Hydrogen: From Lithium to Dental Cements
440(6)
7.5 Perspectives and Outlook
446(13)
7.5.1 Current Capabilities and Beyond
446(3)
7.5.2 Tackling Disordered Systems
449(1)
Funding
450(1)
A.1 Position Uncertainty for a Particle in a Box
451(1)
A.2 Hermite Polynomials
451(1)
A.3 Position and Momentum Uncertainties for an Ensemble of Quantum Particles
451(1)
Acknowledgments
452(1)
References
453(6)
8 Soft Condensed Matter
459(88)
Mitsuhiro Shibayama
8.1 Introduction
460(5)
8.1.1 Soft Condensed Matter
460(2)
8.1.2 Energy Related to Soft Matter
462(1)
8.1.3 Energy Dispersion
463(1)
8.1.4 Dynamics
463(2)
8.2 Basic Theory of Neutron Scattering for Soft Condensed Matter
465(9)
8.2.1 Scattering Vector and Scattering Intensity
465(1)
8.2.2 Coherent Scattering and Incoherent Scattering
466(2)
8.2.3 Elastic Scattering and Inelastic Scattering
468(1)
8.2.4 Scattering Length Density
468(2)
8.2.5 Scattering Length Density Distribution Function and Correlation Function
470(1)
8.2.6 Transmission
470(1)
8.2.7 Multiple Scattering and Background Scattering
471(3)
8.3 Neutron Scattering Instruments and Methodologies
474(10)
8.3.1 Small-Angle Neutron Scattering (SANS)
474(4)
8.3.2 Neutron Reflectivity (NR)
478(3)
8.3.3 Inelastic Neutron Scattering (INS)
481(3)
8.4 Polymeric Systems
484(7)
8.4.1 Polymer and Neutron Scattering
484(2)
8.4.2 Scattering Functions of Polymeric Systems
486(5)
8.5 Rubbers and Gels
491(9)
8.5.1 Scattering Functions of Polymer Gels: Effects of Cross-Linking
491(4)
8.5.2 Charged Gels
495(3)
8.5.3 Physical Gels
498(2)
8.6 Breakthrough Works in Polymer Sciences
500(8)
8.6.1 Size of Polymer Chains
500(1)
8.6.2 Critical Phenomena in Polymer Blends
501(2)
8.6.3 Quantum-Phase Separation of Isotope Blends
503(1)
8.6.4 Direct Observation of Reptation Motion of Molten Polymer by Spin Echo Spectroscopy
503(2)
8.6.5 Order-Disorder Transition of Block Copolymer Thin Films
505(1)
8.6.6 Volume Phase Transition of Polymer Gels
505(1)
8.6.7 Contrast Variation SANS on Surfactant Effects of Block Copolymers
506(2)
8.7 New Directions
508(10)
8.7.1 Poloxamer
508(1)
8.7.2 Kinetics of Amphiphilic Molecules in Lipid Vesicles
509(1)
8.7.3 Shish-Kebab Structure
510(1)
8.7.4 Structure Formation of Ion-Pair and Salt
511(1)
8.7.5 Tough Polymer Gels
511(7)
8.8 Future Directions of Neutron Scattering in Soft Condensed Matter
518(29)
8.8.1 High-Resolution/High-Brilliance SANS
518(1)
8.8.2 Complementary SANS and SAXS
518(1)
8.8.3 Computational-Science-Aided Neutron Scattering
519(3)
8.8.4 High-Pressure Experiments
522(4)
8.8.5 Rheo-SANS
526(4)
Appendix A Scattering Functions of Spheres With Interparticle Interactions
530(1)
A.1 Scattering Function of Isolated Spheres
530(1)
A.2 Interparticle Interference
530(1)
A.3 Debye Equation for Spherical Systems
530(1)
A.4 Fournet Equation
531(1)
A.5 Ornstein-Zernike Function
531(2)
A.6 Percus-Yevick Equation
533(1)
A.7 Modified Percus-Yevick Equation
534(1)
A.8 Hayter-Penfold Equation
535(1)
A.9 Freltoft-Kjems-Sinha Equation
536(1)
Appendix B Contrast Variation
537(1)
B.1 Two-Component Systems
537(1)
B.2 Multicomponent Systems
537(1)
B.3 Contrast Matching Method
537(1)
B.4 Contrast Variation Method
538(1)
B.5 Physical Meaning of the Partial Structure Factor
539(1)
References
540(7)
9 Ionic Conductors and Protonics
547(36)
Maths Karlsson
Adrien Perrichon
9.1 Solid-State Ionics
547(3)
9.2 Proton Conductors
550(2)
9.2.1 Proton Conducting Oxides/Perovskites
551(1)
9.2.2 Mechanisms of Proton Diffusion
552(1)
9.3 Oxide-Ion Conductors
552(4)
9.3.1 Oxide-Ion Conducting Oxides
554(1)
9.3.2 Mechanisms of Oxide-Ion Diffusion
555(1)
9.4 Neutron Scattering
556(3)
9.4.1 Role/Capacity of Neutron Scattering
556(1)
9.4.2 Neutron Scattering and Computer Simulations
557(2)
9.5 Case Studies
559(16)
9.5.1 Neutron Diffraction
559(4)
9.5.2 Neutron Reflectivity
563(1)
9.5.3 Inelastic Neutron Scattering
564(4)
9.5.4 Quasielastic Neutron Scattering
568(5)
9.5.5 Case Studies on Other Structure Types
573(2)
9.6 Perspectives
575(8)
Acknowledgments
576(1)
Abbreviations of Commonly Used Words in Alphabetical Order
576(1)
References
576(7)
10 High-Temperature Levitated Materials
583(54)
Louis Hennet
Dirk Holland Moritz
Richard Weber
Andreas Meyer
10.1 Introduction
583(2)
10.2 Theoretical Background/Data Analysis
585(5)
10.2.1 Structure (WANS)
585(2)
10.2.2 Dynamics (QENS)
587(3)
10.3 Neutron Scattering Instruments
590(2)
10.3.1 For WANS Experiments
590(1)
10.3.2 For QENS Experiments
591(1)
10.4 Levitation Techniques
592(12)
10.4.1 Aerodynamic Levitation (CNL)
593(6)
10.4.2 Electromagnetic Levitation (EML)
599(2)
10.4.3 Electrostatic Levitation (ESL)
601(3)
10.4.4 Temperature Measurements
604(1)
10.5 Structural Investigations
604(16)
10.5.1 Study of Metallic Melts
604(8)
10.5.2 Study of Oxide Melts
612(8)
10.6 Dynamical Investigations
620(10)
10.6.1 Study of Metallic Melts Using EML
620(5)
10.6.2 Study of Metallic Melts Using ESL
625(1)
10.6.3 Experiments Using CNL
626(4)
10.7 Conclusion and Perspectives
630(7)
Acknowledgments
632(1)
References
632(5)
11 High-Pressure Neutron Science
637(46)
Malcolm Guthrie
11.1 Introduction
637(2)
11.2 High-Pressure Instrumentation
639(9)
11.2.1 The Beginnings of High-Pressure Instrumentation
639(3)
11.2.2 The Diamond Anvil Cell (DAC)
642(2)
11.2.3 The Rise of Synchrotrons
644(2)
11.2.4 Neutron Instrumentation at High Pressure
646(2)
11.3 Data Reduction Considerations for High Pressure Cells
648(5)
11.3.1 The Cell Background
649(1)
11.3.2 Cell Attenuation
650(3)
11.4 High-Pressure Neutron Facilities
653(11)
11.4.1 Reactor Sources
654(3)
11.4.2 Spallation Sources
657(5)
11.4.3 The European Spallation Source
662(2)
11.5 High-Pressure Neutron Science
664(8)
11.5.1 Biological Systems
664(2)
11.5.2 Chemistry and Materials Science
666(6)
11.6 Other Future Applications of High Pressure
672(3)
11.7 Summary
675(8)
Appendix A
675(1)
References
676(7)
12 Engineering Applications
683
Wanchuck Woo
Masato Ohnuma
Xun-Li Wang
12.1 Introduction
683(4)
12.2 Residual Stress Measurements
687(14)
12.2.1 Principle of Strain Measurements
689(2)
12.2.2 Enhanced Capability of Deep Penetration by Neutron Diffraction
691(1)
12.2.3 Practical Issues in Neutron-Diffraction Measurements of Residual Stresses
692(2)
12.2.4 Examples of Engineering Applications
694(7)
12.3 In-Situ Study of Deformation and Phase Transformation
701(17)
12.3.1 Experimental Considerations
702(2)
12.3.2 Case Studies
704(14)
12.4 Small-Angle Neutron Scattering
718(11)
12.4.1 Measurement Theory
718(1)
12.4.2 Practical Aspects of Analysis in Metals and Alloys
719(4)
12.4.3 Which Form Factor to Use?
723(1)
12.4.4 Quantitative Evaluation of Volume Fraction---Importance of Scattering Length Density
724(1)
12.4.5 Magnetic Scattering and "A" Value in Steel
725(1)
12.4.6 Another Way to Use Different Contrast: Combination of SANS and SAXS
726(2)
12.4.7 Further Expansion of SANS as a Daily Tool With a Compact Neutron Source
728(1)
12.5 Summary and Outlook
729
Acknowledgments
730(1)
References
730(9)
Index
739
Felix Fernandez-Alonso graduated with a Ph.D. in Chemistry from Stanford University under the supervision of R.N. Zare. He has been Marie Curie Fellow with the Italian Research Council and Associate Lecturer in Chemistry with the Open University. He joined the ISIS Pulsed Neutron and Muon Source at the Rutherford Appleton Laboratory in the UK in 2003, where he is currently head of the Molecular Spectroscopy Group and coordinator of the Centre for Molecular Structure and Dynamics. He has been appointed Visiting Professor at University College London and Nottingham Trent University in the UK, and at the University of Orléans in France. He is also Fellow of the UK Royal Society of Chemistry and scientific consultant for the chemical industry.Dr. Fernandez-Alonsos current research interests focus on the development and subsequent exploitation of neutron scattering techniques in physical chemistry, with particular emphasis on materials-chemistry challenges of relevance to societal needs and long-term sustainability. These include gas and charge storage in nanostructured media, molecular and macromolecular intercalation phenomena, and solid-state protonics. He has approximately 100 refereed publications and is currently involved in several neutron instrumentation projects at ISIS and abroad. David L. Price obtained a Ph.D. in Physics from Cambridge University under the supervision of G. L. Squires. He has subsequently had a 40-year career in research and administration involving neutron and x-ray experiments and facilities. After a postdoctoral appointment at the High-Flux Beam Reactor (HFBR) at Brookhaven National Laboratory, he joined the staff at Argonne National Laboratory where he served variously as Senior Scientist, Director of the Solid-State Science Division and Director of the Intense Pulsed Neutron Source (IPNS) during its construction and commissioning phases. He later joined Oak Ridge National Laboratory as Executive Director of the High-Flux Isotope Reactor and Center for Neutron Scattering. He has been invited as Distinguished Visiting Professor at the Graduate University for Advanced Studies, Hayama, Japan, and as Visiting Fellow Commoner at Trinity College, Cambridge, UK. He received the Warren Prize of the American Crystallographic Association in 1997 and an Alexander Von Humboldt Research Award in 1998. He is a Fellow of the American Physical Society, the Institute of Physics, UK, and the Neutron Scattering Society of America.Dr. Prices specific research interests include order and disorder in solids and liquids, the dynamics of disordered systems, the glass transition and melting,neutron diffraction with isotope substitution, and deep inelastic and quasielastic neutron scattering. His monograph on High-Temperature Levitated Materials was published by Cambridge University Press in 2010. He has over 250 refereed publications and has designed and commissioned neutron scattering spectrometers at the HFBR and at the CP-5 Research Reactor and the IPNS at Argonne.