Muutke küpsiste eelistusi

E-raamat: New Approaches in Classification and Data Analysis

Edited by , Edited by , Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book brings together a wide range of topics and perspectives in the growing field of Classification and related methods of Exploratory and Multivariate Data Analysis. It gives a broad view on the state ofthe art, useful for those in the scientific community who gather data and seek tools for analyzing and interpreting large sets of data. As it presents a wide field of applications, this book is not only of interest for data analysts, mathematicians and statisticians, but also for scientists from many areas and disciplines concerned with real data, e. g. , medicine, biology, astronomy, image analysis, pattern recognition, social sciences, psychology, marketing, etc. It contains 79 invited or selected and refereed papers presented during the Fourth Bi- ennial Conference of the International Federation of Classification Societies (IFCS'93) held in Paris. Previous conferences were held at Aachen (Germany), Charlottesville (USA) and Edinburgh (U. K. ). The conference at Paris emerged from the elose coop- eration between the eight members of the IFCS: British Classification Society (BCS), Classification Society of North America (CSNA), Gesellschaft fur Klassifikation (GfKl), J apanese Classification Society (J CS), Jugoslovenska Sekcija za Klasifikacije (JSK), Societe Francophone de Classification (SFC), Societa. Italiana di Statistica (SIS), Vereniging voor Ordinatie en Classificatie (VOC), and was organized by INRIA ("Institut National de Recherche en Informatique et en Automatique"), Rocquencourt and the "Ecole Nationale Superieure des Telecommuni- cations," Paris.

Muu info

Springer Book Archives
Classification and Clustering: Problems for the Future.- From
classifications to cognitive categorization: the example of the road
lexicon.- A review of graphical methods in Japanfrom histogram to dynamic
display.- New Data and New Tools: A Hypermedia Environment for Navigating
Statistical Knowledge in Data Science.- On the logical necessity and priority
of a monothetic conception of class, and on the consequent inadequacy of
polythetic accounts of category and categorization.- Research and
Applications of Quantification Methods in East Asian Countries.- Algorithms
for a geometrical P.C.A. with the L1-norm.- Comparison of hierarchical
classifications.- On quadripolar Robinson dissimilarity matrices.- An Ordered
Set Approach to Neutral Consensus Functions.- From Apresjan Hierarchies and
Bandelt-Dress Weak hierarchies to Quasi-hierarchies.- Spanning trees and
average linkage clustering.- Adjustments of tree metrics based on minimum
spanning trees.- The complexity of the median procedure for binary trees.- A
multivariate analysis of a series of variety trials with special reference to
classification of varieties.- Quality control of mixture. Application: The
grass.- Mixture Analysis with Noisy Data.- Locally optimal tests on spatial
clustering.- Choosing the Number of Clusters, Subset Selection of Variables,
and Outlier Detection in the Standard Mixture-Model Cluster Analysis.- An
examination of procedures for determining the number of clusters in a data
set.- The gap test: an optimal method for determining the number of natural
classes in cluster analysis.- Mode detection and valley seeking by binary
morphological analysis of connectivity for pattern classification.-
Interactive Class Classification Using Types.- K-means clustering in a
low-dimensional Euclideanspace.- Complexity relaxation of dynamic programming
for cluster analysis.- Partitioning Problems in Cluster Analysis: A Review of
Mathematical Programming Approaches.- Clusters and factors: neural algorithms
for a novel representation of huge and highly multidimensional data sets.-
Graphs and structural similarities.- A generalisation of the diameter
criterion for clustering.- Percolation and multimodal data structuring.-
Classification and Discrimination Techniques Applied to the Early Detection
of Business Failure.- Recursive Partition and Symbolic Data Analysis.-
Interpretation Tools For Generalized Discriminant Analysis.- Inference about
rejected cases in discriminant analysis.- Structure Learning of Bayesian
Networks by Genetic Algorithms.- On the representation of observational data
used for classification and identification of natural objects.- Alternative
strategies and CATANOVA testing in two-stage binary segmentation.- Alignment,
Comparison and Consensus of Molecular Sequences.- An Empirical Evaluation of
Consensus Rules for Molecular Sequences.- A Probabilistic Approach To
Identifying Consensus In Molecular Sequences.- Applications of Distance
Geometry to Molecular Conformation.- Classification of aligned biological
sequences.- Use of Pyramids in Symbolic Data Analysis.- Proximity
Coefficients between Boolean symbolic objects.- Conceptual Clustering in
Structured Domains: A Theory Guided Approach.- Automatic Aid to Symbolic
Cluster Interpretation.- Symbolic Clustering Algorithms using Similarity and
Dissimilarity Measures.- Feature Selection for Symbolic Data Classification.-
Towards extraction method of knowledge founded by symbolic objects.- One
Method of Classification based on an Analysis of the Structural Relationship
between Independent Variables.- The Integration of Neural Networks with
Symbolic Knowledge Processing.- Ordering of Fuzzy k-Partitions.- On the
Extension of Probability Theory and Statistics to the Handling of Fuzzy
Data.- Fuzzy Regression.- Clustering and Aggregation of Fuzzy Preference
Data: Agreement vs. Information.- Rough Classification with Valued Closeness
Relation.- Representing proximities by network models.- An Eigenvector
Algorithm to Fit lp-Distance Matrices.- A non linear approach to Non
Symmetrical Data Analysis.- An Algorithmic Approach to Bilinear Models for
Two-Way Contingency Tables.- New Approaches Based on Rankings in Sensory
Evaluation.- Estimating failure times distributions from censored systems
arranged in series.- Calibration Used as a Nonresponse Adjustment.- Least
Squares Smoothers and Additive Decomposition.- High Dimensional
Representations and Information Retrieval.- Experiments of Textual Data
Analysis at Electricité de France.- Conception of a Data Supervisor in the
Prospect of Piloting Management Quality of Service and Marketing.-
Discriminant Analysis Using Textual Data.- Recent Developments in Case Based
Reasoning: Improvements of Similarity Measures.- Contiguity in discriminant
factorial analysis for image clustering.- Exploratory and Confirmatory
Discrete Multivariate Analysis in a Probabilistic Approach for Studying the
Regional Distribution of Aids in Angola.- Factor Analysis of Medical Image
Sequences (FAMIS): Fundamental principles and applications.- Multifractal
Segmentation of Medical Images.- The Human Organisma Place to Thrive for the
Immuno-Deficiency Virus.- Comparability and usefulness of newer and classical
data analysis techniques. Application in medical domain classification.- The
Classification of IRAS Point Sources.- Astronomical classification ofthe
Hipparcos input catalogue.- Group identification and individual assignation
of stars from kinematical and luminosity parameters.- Specific numerical and
symbolic analysis of chronological series in view to classification of long
period variable stars.- Author and Subject Index.