Muutke küpsiste eelistusi

E-raamat: New Materials in Civil Engineering

Edited by (Fellow of t), Edited by (Professor, Department of Civil and Environmental Engineering, Kongju National University, Republic of Korea), Edited by , Edited by (Associate Professor, Dept. of Civil Engineering, National Institute of Technology Patna, Patna, Bihar, India)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Jul-2020
  • Kirjastus: Butterworth-Heinemann Inc
  • Keel: eng
  • ISBN-13: 9780128190753
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 279,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Jul-2020
  • Kirjastus: Butterworth-Heinemann Inc
  • Keel: eng
  • ISBN-13: 9780128190753
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

New Materials in Civil Engineering provides engineers and scientists with the tools and methods needed to meet the challenge of designing and constructing more resilient and sustainable infrastructures. This book is a valuable guide to the properties, selection criteria, products, applications, lifecycle and recyclability of advanced materials. It presents an A-to-Z approach to all types of materials, highlighting their key performance properties, principal characteristics and applications. Traditional materials covered include concrete, soil, steel, timber, fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber and reinforced polymers. In addition, the book covers nanotechnology and biotechnology in the development of new materials.

  • Covers a variety of materials, including fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber reinforced polymer and waste materials
  • Provides a “one-stop resource of information for the latest materials and practical applications
  • Includes a variety of different use case studies
List of Contributors
xvii
1 An overview of cementitious construction materials
1(64)
Nagesh R. Iyer
1.1 Cement and concrete
1(9)
1.2 High-performance concrete
10(3)
1.3 Geopolymer concrete
13(3)
1.4 Fiber-reinforced concrete
16(7)
1.5 Fiber-reinforced concrete polymer composites
23(2)
1.6 Lightweight concrete
25(15)
1.7 Ultrahigh-strength concrete
40(10)
1.8 Biomimetics and bacterial concrete
50(15)
Acknowledgments
61(1)
References
61(4)
2 Computational intelligence for modeling of pavement surface characteristics
65(14)
Behrouz Mataei
Fereidoon Moghadas Nejad
Hamzeh Zakeri
Amir H. Gandomi
2.1 Introduction
65(2)
2.2 Computational intelligence methods
67(8)
2.3 Conclusion
75(4)
References
76(1)
Further reading
77(2)
3 Computational intelligence for modeling of asphalt pavement surface distress
79(38)
Sajad Ranjbar
Fereidoon Moghadas Nejad
Hamzeh Zakeri
Amir H. Gandomi
3.1 Introduction
79(1)
3.2 CI methods
80(4)
3.3 Methodology and application
84(13)
3.4 Application of CI frameworks in PMS
97(5)
3.5 Conclusion
102(15)
References
104(13)
4 Expanded polystyrene geofoam
117(38)
S.N. Moghaddas Tafreshi
S.M. Amin Ghotbi Siabil
A.R. Dawson
4.1 Introduction
117(3)
4.2 EPS properties
120(11)
4.3 EPS in embankments
131(7)
4.4 EPS in bridge abutments and retaining structures
138(6)
4.5 EPS in utility protection
144(5)
4.6 EPS in other uses
149(1)
4.7 Conclusions
150(5)
References
151(4)
5 Recycling of industrial wastes for value-added applications in clay-based ceramic products: a global review (2015--19)
155(66)
M. Contreras
M.J. Gazquez
M. Romero
J.P. Bolivar
5.1 Introduction
155(3)
5.2 Industrial waste materials as aggregate in clay ceramics
158(6)
5.3 Review of studies into the incorporation of waste materials in brick making
164(44)
5.4 Discussion
208(13)
References
209(12)
6 Emerging advancement of fiber-reinforced polymer composites in structural applications
221(52)
Kishore Kumar Mahato
Krishna Dutta
Bankim Chandra Ray
6.1 Introduction
221(3)
6.2 Assessment of fiber-reinforced polymer composites by mechanical, chemical, and thermal behaviors
224(9)
6.3 Evaluation of special structural properties
233(8)
6.4 Environmental durability of fiber-reinforced polymer composites in civil structures
241(20)
6.5 Conclusions and future perspectives
261(12)
Acknowledgment
262(1)
References
262(11)
7 Fiber-reinforced concrete and ultrahigh-performance fiber-reinforced concrete materials
273(42)
Francesco Micelli
Angela Renni
Abdou George Kandalaft
Sandro Mow
7.1 Fiber-reinforced concrete
273(21)
7.2 Ultrahigh-performance concrete ultrahigh-performance fiber-reinforced concrete
294(21)
References
310(5)
8 The superplasticizer effect on the Theological and mechanical properties of self-compacting concrete
315(18)
Mouhcine Ben Aicha
8.1 Introduction
315(1)
8.2 Chemical structure of superplasticizers
315(3)
8.3 Action mechanisms of superplasticizers
318(3)
8.4 Superplasticizer effect on cement paste
321(3)
8.5 Superplasticizer effects on concrete rheology
324(2)
8.6 Superplasticizer effect on concrete compressive strength
326(1)
8.7 Conclusion
327(6)
References
328(5)
9 Trends and perspectives in the use of timber and derived products in building facades
333(42)
Anna Sandak
Marcin Brzezicki
Jakub Sandak
9.1 Introduction
333(2)
9.2 Biobased facade materials
335(13)
9.3 Trends and perspectives
348(21)
9.4 Conclusions
369(6)
Acknowledgment
370(1)
References
370(5)
10 Dynamic response of laminated composite plates fitted with piezoelectric actuators
375(20)
S.K. Sahu
A. Gupta
E.V. Prasad
10.1 Introduction
375(3)
10.2 Formulation
378(5)
10.3 Linear static analysis of cross-ply laminated plates
383(1)
10.4 Dynamic and transient analyses
383(1)
10.5 Nonlinear vibration analysis of composite plates embedded with piezoelectric materials
384(8)
10.6 Conclusion
392(3)
References
392(3)
11 Functional nanomaterials and their applications toward smart and green buildings
395(40)
Kwok Wei Shah
Ghasan Fahim Huseien
Teng Xiong
11.1 Introduction
395(1)
11.2 Sustainability of traditional ordinary Portland cement-based concrete
396(2)
11.3 Self-healing concrete
398(12)
11.4 Nanomaterials
410(3)
11.5 Nanomaterial-based self-healing concrete
413(6)
11.6 Sustainability of nanomaterial-based self-healing concrete
419(1)
11.7 Advantages and disadvantages of nanomaterials for self-healing concrete
420(1)
11.8 Economy of nanomaterial-based self-healing concretes
420(1)
11.9 Environmental suitability and safety features of nanomaterial-based concretes
421(1)
11.10 Conclusions
422(13)
References
423(12)
12 Production of sustainable concrete composites comprising waste metalized plastic fibers and palm oil fuel ash
435(24)
Hossein Mohammadhosseini
Mahmood Md. Tahir
Rayed Alyousef
Hisham Alabduljabbar
12.1 Introduction
435(2)
12.2 Waste metalized plastic fibers
437(2)
12.3 Concrete incorporating waste metalized plastic fibers
439(15)
12.4 Applications
454(1)
12.5 Conclusions
454(5)
References
455(4)
13 Alkali-activated concrete systems: a state of art
459(34)
R. Manjunath
Mattur C. Narasimhan
13.1 Introduction
459(1)
13.2 Geopolymers and alkali-activated cementitious systems
460(3)
13.3 Requirements for alkali activation of ground granulated blast furnace slag
463(1)
13.4 Alkali-activated slag systems
463(1)
13.5 Effect of dosage and modulus of activator solutions
464(1)
13.6 Workability and strength characteristics of geopolymers and alkali-activated composites
465(4)
13.7 Alkali-activated composites with alternative binders
469(2)
13.8 Alkali-activated composites with different activators
471(1)
13.9 Alkali-activated composites with alternative aggregates
472(1)
13.10 Durability studies on alkali-activated composites
473(2)
13.11 Elevated-temperature performance of alkali-activated composites
475(2)
13.12 Behaviour of alkali-activated composites incorporated with fibers
477(2)
13.13 Behaviour of rebar-reinforced structural elements made from alkali-activated concrete mixes
479(1)
13.14 Summary of alkali-activated composite systems
480(2)
13.15 Future trends for AA composites----research needs
482(11)
References
482(11)
14 Porous concrete pavement containing nanosilica from black rice husk ash
493(36)
Ramadhansyah Putra Jaya
14.1 Introduction
493(3)
14.2 Literature review
496(3)
14.3 Materials
499(2)
14.4 Experimental plan
501(11)
14.5 Results and discussions
512(11)
14.6 Conclusions
523(6)
Acknowledgment
523(1)
References
523(6)
15 Porous alkali-activated materials
529(36)
Priyadharshini Perumal
Tero Luukkonen
Harisankar Sreenivasan
Paivo Kinnunen
Mirja Illikainen
15.1 Introduction
529(1)
15.2 Porous alkali-activated materials
530(11)
15.3 Characterization of porosity in alkali-activated materials
541(5)
15.4 Properties of porous alkali-activated materials
546(3)
15.5 Functional properties and applications
549(5)
15.6 Conclusions
554(11)
Acknowledgments
555(1)
References
555(10)
16 Lightweight cement-based materials
565(26)
Teresa M. Pique
Federico Giurich
Christian M. Martin
Florencia Spinazzola
Diego G. Manzanal
16.1 Introduction
565(1)
16.2 Lightweight/low-strength aggregates
566(9)
16.3 Lightweight/high-strength aggregates
575(5)
16.4 Extenders
580(6)
16.5 Outlook and future trends
586(5)
References
587(4)
17 Development of alkali-activated binders from sodium silicate powder produced from industrial wastes
591(22)
Parthiban Kathirvel
17.1 Introduction
591(1)
17.2 Alternative for Portland cement
592(1)
17.3 Alkaline activators
593(1)
17.4 Waste glass
594(3)
17.5 Silica fume
597(1)
17.6 Rice husk ash
597(5)
17.7 Sugarcane bagasse ash
602(3)
17.8 Other materials
605(1)
17.9 Cost analysis
606(3)
17.10 Summary and conclusions
609(4)
References
609(4)
18 Innovative cement-based materials for environmental protection and restoration
613(30)
Hosam M. Saleh
Samir B. Eskander
18.1 Introduction
613(4)
18.2 Innovative cement-based material
617(19)
18.3 Conclusions
636(7)
References
638(5)
19 Comparative effects of using recycled CFRP and GFRP fibers on fresh- and hardened-state properties of self-compacting concretes: a review
643(14)
M. Mastali
Z. Abdollahnejad
A. Dalvand
A. Sattarifard
Mirja Illikainen
19.1 Introduction
643(2)
19.2 Experimental plan
645(2)
19.3 Results and discussion
647(3)
19.4 Analysis
650(2)
19.5 Conclusions
652(5)
References
654(3)
20 Corrosion inhibitors for increasing the service life of structures
657(20)
B. Bhuvaneshwari
A. Selvaraj
Nagesh R. Iyer
20.1 Introduction
657(1)
20.2 What is corrosion?
658(2)
20.3 Severity of corrosion
660(1)
20.4 Concrete corrosion inhibitors
661(2)
20.5 Limitation of inhibitors
663(1)
20.6 Mechanism of inhibition
664(1)
20.7 Techniques to assess inhibitor performances
665(1)
20.8 Concrete corrosion assessing techniques
666(2)
20.9 Surface characterization of the metals/rebars after corrosion
668(1)
20.10 Corrosion product analysis techniques
668(2)
20.11 Durability studies of concrete with admixtures
670(3)
20.12 Conclusion
673(4)
Acknowledgments
673(1)
References
673(4)
21 Use of fly ash for the development of sustainable construction materials
677(14)
Sanchit Gupta
Sandeep Chaudhary
21.1 Introduction
677(1)
21.2 Sustainable development of fly ash utilization
678(1)
21.3 Characterization of fly ash
679(2)
21.4 Fly ash applications
681(1)
21.5 Developments in industrial fly ash applications
682(4)
21.6 Conclusions
686(5)
References
687(4)
22 An innovative and smart road construction material: thermochromic asphalt binders
691(26)
Henglong Zhang
Zihao Chen
Chongzheng Zhu
Chuanwen Wei
22.1 Introduction
691(2)
22.2 Three-component organic reversible thermochromic materials
693(6)
22.3 The performance characterization of thermochromic asphalt binders
699(14)
22.4 The adjustment of bituminous pavement temperature
713(1)
22.5 Recommendations for future research and applications
714(3)
References
715(2)
23 Resin and steel-reinforced resin used as injection materials in bolted connections
717(28)
Haohui Xin
Martin Nijgh
Milan Veljkovic
23.1 Introduction
717(4)
23.2 Computational homogenization
721(1)
23.3 Experiments
722(11)
23.4 Numerical simulation of resin
733(1)
23.5 Numerical simulation of steel-reinforced resin
734(7)
23.6 Conclusions
741(4)
References
743(2)
24 Swelling behavior of expansive soils stabilized with expanded polystyrene geofoam inclusion
745(32)
S. Selvakumar
B. Soundara
24.1 Effect of geobeads inclusion
745(10)
24.2 Effect of the geofoam granules column
755(19)
24.3 Conclusions
774(3)
Acknowledgments
774(1)
References
775(2)
25 New generation of cement-based composites for civil engineering
777(20)
Danna Wang
Wei Zhang
Baoguo Han
25.1 Introduction
777(1)
25.2 Smart and multifunctional cement-based composites
778(6)
25.3 Nanocement-based composites
784(5)
25.4 Conclusions
789(8)
Acknowledgments
790(1)
References
790(7)
26 Potential use of recycled aggregate as a self-healing concrete carrier
797(28)
Chao Liu
Zhenyuan Lv
26.1 Introduction
797(5)
26.2 Self-healing concrete materials
802(3)
26.3 Method and results
805(12)
26.4 Effect of recycled aggregate in self-healing concrete
817(3)
26.5 Outlook
820(5)
References
821(4)
27 Self-healing concrete
825(32)
Xu Huang
Sakdirat Kaewunruen
27.1 Introduction
825(3)
27.2 Materials and methods
828(7)
27.3 Results
835(16)
27.4 Discussion
851(2)
27.5 Conclusion
853(4)
Acknowledgments
854(1)
Author contributions
854(1)
Conflicts of interest
854(1)
References
854(3)
28 Equations for prediction of rubberized concrete compressive strength: a literature review
857(20)
Marijana Hadzima-Nyarko
Ivana Milicevic
28.1 Introduction
857(1)
28.2 Literature review
858(1)
28.3 Database description
859(5)
28.4 Expressions for compressive strength in the literature
864(1)
28.5 Expressions for compressive strength of concrete
865(4)
28.6 Comparison of existing expressions
869(3)
28.7 Conclusion
872(5)
Acknowledgment
872(1)
References
872(5)
29 Influence of cobinders on durability and mechanical properties of alkali-activated magnesium aluminosilicate binders from soapstone
877(20)
Z. Abdollahnejad
M. Mastali
F. Rahim
Tero Luukkonen
Paivo Kinnunen
Mirja Illikainen
29.1 Introduction
877(1)
29.2 Experimental plan
878(6)
29.3 Results and discussion
884(8)
29.4 Conclusions
892(5)
Acknowledgment
894(1)
References
894(3)
30 Fly ash utilization in concrete tiles and paver blocks
897(22)
S.K. Sahu
S. Kamalakkannan
P.K. Pati
30.1 Introduction
897(3)
30.2 Experimental procedure
900(5)
30.3 Results and discussion
905(10)
30.4 Conclusion
915(4)
References
916(3)
31 Problems in short-fiber composites and analysis of chopped fiber-reinforced materials
919(126)
Wahid Monfared
31.1 Introduction
919(14)
31.2 Analytical methods
933(21)
31.3 Numerical methods
954(19)
31.4 Experimental methods
973(17)
31.5 Constitutive and fundamental researches
990(2)
31.6 Solved problems
992(53)
References
1035(10)
Index 1045
Dr. Samui is an Associate Professor in the Department of Civil Engineering at NIT Patna, India. He received his PhD in Geotechnical Engineering from the Indian Institute of Science Bangalore, India, in 2008. His research interests include geohazard, earthquake engineering, concrete technology, pile foundation and slope stability, and application of AI for solving different problems in civil engineering. Dr. Samui is a repeat Elsevier editor but also a prolific contributor to journal papers, book chapters, and peer-reviewed conference proceedings.

Dookie Kim is a Professor in the Department of Civil and Environmental Engineering, Kongju National University ,1223-24 Cheonan-daero, 31080, Republic of Korea. Professor Kim has a broad experience in structural dynamics. He published journal articles, conference papers, book chapters and 2 books. Dr. Nagesh R. Iyer is a Fellow of the Indian National Academy of Engineering and is currently Dean of (Infrastructure, Planning and Support) and Visiting Professor, at the Indian Institute of Technology Dharwad. He was formerly Director of CSIR-Structural Engineering Research Centre and Coordinating Director of CSIR Madras Complex. Concurrently he held the posts of Acting Director and Distinguished Emeritus Professor at the Academy of Scientific and Innovative Research (AcSIR). He has over 44 years of experience in the computer-aided analysis and design of complex and large structures which include infrastructural facilities. Prof. Sandeep Chaudhary is currently working as Professor in the Discipline of Civil Engineering, Indian Institute of Technology Indore, India. Before joining IIT Indore, he served as a faculty member in different capacities at MNIT Jaipur, India, for more than twenty years. His research group carries out both analytical and experimental studies, which range from microstructure studies to full-scale. He has Chaired Technical Committee 1: Design” of the Asian Concrete Federation for three years and is presently heading Standing Committee 1 (SC1): Design” of the Asian Concrete Federation.