Muutke küpsiste eelistusi

E-raamat: Nilspace Factors for General Uniformity Seminorms, Cubic Exchangeability and Limits

  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"We study a class of measure-theoretic objects that we call cubic couplings, on which there is a common generalization of the Gowers norms and the Host- Kra seminorms. Our main result yields a complete structural description of cubic couplings, using nilspaces. We give three applications. Firstly, we describe the characteristic factors of Host-Kra type seminorms for measure-preserving actions of countable nilpotent groups. This yields an extension of the structure theorem of Host and Kra. Secondly, we characterize sequences of random variables with a property that we call cubic exchangeability. These are sequences indexed by the infinite discrete cube, such that for every integer k [ geq] 0 the joint distribution's marginals on affine subcubes of dimension k are all equal. In particular, our result gives a description, in terms of compact nilspaces, of a related exchangeability property considered by Austin, inspired by a problem of Aldous. Finally, using nilspaces we obtain limit objects for sequences offunctions on compact abelian groups (more generally on compact nilspaces) such that the densities of certain patterns in these functions converge. The paper thus proposes a measure-theoretic framework on which the area of higher-order Fourier analysis can be based, and which yields new applications of this area in a unified way in ergodic theory and arithmetic combinatorics"--
Pablo Candela, Universidad Autonoma de Madrid, Spain, and Ciudad Universitaria de Cantoblanco, Madrid, Spain.

Balazs Szegedy, MTA Alfred Renyi Institute of Mathematics, Budapest, Hungary.