Muutke küpsiste eelistusi

E-raamat: Nitric Oxide Sensing

  • Formaat: 152 pages
  • Ilmumisaeg: 16-Sep-2021
  • Kirjastus: Jenny Stanford Publishing
  • Keel: eng
  • ISBN-13: 9781000334777
  • Formaat - EPUB+DRM
  • Hind: 135,72 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 152 pages
  • Ilmumisaeg: 16-Sep-2021
  • Kirjastus: Jenny Stanford Publishing
  • Keel: eng
  • ISBN-13: 9781000334777

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Although nitric oxide (NO) is an important biological signaling molecule, its free-radical electronic configuration makes it a most reactive molecule and the scariest colorless gas causing immense environmental and health hazards. Detection of NO levels in biological samples and in the atmosphere is therefore crucial. In the past few years, extensive efforts have been devoted to developing many active sensors and effective devices for detecting and quantifying atmospheric NO, NO generated in biological samples, and NO exhaled in the human breath.

This book provides a concrete summary of recent state-of-the-art small-molecule probes and novel carbon nanomaterials used for chemical, photoluminescent, and electrochemical NO detection. One chapter is especially dedicated to the available devices used for detecting NO in the human breath that indirectly infers to lung inflammation. The authors with expertise in diverse dimensions have attempted to cover almost all areas of NO sensing.

Preface vii
1 Introduction
1(6)
2 Small-Molecule and Metal Complexes as Nitric Oxide Sensors
7(36)
2.1 Introduction
7(3)
2.2 Nitric Oxide Homeostasis
10(2)
2.3 Fluorescent Detection Kit for NO Sensors
12(1)
2.3.1 Different Strategies
12(1)
2.3.2 Fluorophore Displacement without Metal Reduction
13(1)
2.3.3 Metal Reduction without Fluorophore Displacement
13(1)
2.3.4 Metal Reduction with Fluorophore Displacement
13(1)
2.4 Metal Complexes for NO Sensing
13(14)
2.4.1 Cobalt Systems
13(5)
2.4.2 Iron Systems
18(1)
2.4.3 Reversible NO Sensing by Rhodium Complexes
19(1)
2.4.4 NO Detection with Ruthenium Complexes
20(3)
2.4.5 Copper Complex as a NO Sensing Probe
23(2)
2.4.6 Copper (II) Conjugate Polymer
25(1)
2.4.7 Copper (II) Anthracyl Cyclam Complex
26(1)
2.5 Polymer-Based Sensors
27(5)
2.6 Biomedical Applications
32(5)
2.7 Conclusion
37(6)
3 Nitric Oxide Sensing with Carbon Nanomaterials
43(36)
3.1 Carbon Nanomaterials
43(1)
3.2 Nitric Oxide Sensing with Carbon Dots
44(7)
3.3 Nitric Oxide Sensing with Carbon Nanotubes
51(7)
3.4 Nitric Oxide Sensing with Graphene
58(14)
3.5 Conclusion
72(7)
4 Electrochemical Nitric Oxide Detection
79(38)
4.1 Introduction
79(3)
4.2 Scope of Electrodes for NO Detection
82(5)
4.3 NO Detection on Noble Metals and Pt Electrodes
87(4)
4.4 Biosensors with Modified Electrodes
91(6)
4.5 Metallocycle-Modified Electrodes
97(5)
4.6 Nanocomposite Electrodes
102(5)
4.7 Conclusion
107(10)
5 Nitric Oxide--Sensing Devices: A Practical Application
117(20)
5.1 Introduction
117(1)
5.2 Devices for Exhaled NO Detection
118(12)
5.2.1 Chemiluminiscence Devices
118(3)
5.2.2 Electrochemical Devices
121(3)
5.2.3 Laser-Based Device
124(6)
5.3 In Vivo NO Measurement Devices
130(2)
5.4 Conclusions
132(5)
Index 137
Sagarika Bhattacharya is a postdoctoral fellow at Ben Gurion University of the Negev, Israel. She obtained her PhD in chemistry from the University of Calcutta, India. Her current research interest is the use of carbon nanodot gel for biosensing and optics.

Subhra Samanta is a DST Inspire faculty in the CSIR-Central Mechanical Engineering Research Institute, India. He obtained his PhD in bioinorganic chemistry from the Indian Association for the Cultivation of Sciences, India. His current research interest is the mechanism underlying nitric oxide reductase, clean energy conversion, and biowaste management.

Biswarup Chakraborty is assistant professor at the Department of Chemistry, Indian Institute of Technology Delhi, India. He obtained his PhD in chemistry from the Indian Association for the Cultivation of Science, with a specialization in bioinorganic chemistry. His current research interest is the design of photo(electro)catalysts for energy harvesting and storage applications.