Muutke küpsiste eelistusi

E-raamat: Noises in Optical Communications and Photonic Systems

(Huawei Technologies, Munich, Germany)
  • Formaat: 474 pages
  • Sari: Optics and Photonics
  • Ilmumisaeg: 17-Nov-2016
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781482246957
  • Formaat - PDF+DRM
  • Hind: 93,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 474 pages
  • Sari: Optics and Photonics
  • Ilmumisaeg: 17-Nov-2016
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781482246957

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Transmitting information over optical fibers requires a high degree of signal integrity with respect to noise levels existing in optical systems. The methods and techniques for noise evaluations are important so that high performance can be obtained. This book provides a fundamental understanding of noise generation processes in optical communications and photonic signals. It discusses techniques for noise evaluation in optical communication systems, especially digital optical systems, as well as transmission system performance and noise impacts in photonic processing systems.

Arvustused

"The topics studied in this book are very interesting. This book is very useful for people who work on photonic systems and optical communications." Robinson Cruzoe Guzmán Martínez, University Carlos III of Madrid, Spain

"...the book is richly illustrated with diagrams and charts that describe the performance of practical systems, a precious reference for both students and professionals." Optics & Photonics News, June 2017

Preface xvii
Acknowledgments xix
Author xxi
List of Abbreviations
xxiii
Chapter 1 Introduction
1(8)
1.1 Digital Optical Communications and Transmission Systems: A History Overview and Challenging Issues
1(5)
1.2 Objectives of This Book
6(1)
1.3 Organization of
Chapters
7(2)
References
7(2)
Chapter 2 Capacity and Quantum Limits in Optical Systems
9(30)
2.1 Capacity Limit of the Fiber Optics Information Channel
9(5)
2.1.1 Channel Capacity
11(1)
2.1.2 Fiber Optic Transmission Systems
11(3)
2.2 Optical Coherent Reception: Capacity and Nonlinearity Issues
14(1)
2.3 Gaussian-Noisy Finite Memory System
15(2)
2.3.1 Finite Memory Model
15(1)
2.3.2 Gaussian Noise Model
15(2)
2.4 Correction of Channel Capacity by Perturbation
17(3)
2.4.1 Correction under Linear Dispersion Effect
17(2)
2.4.2 Correction and Capacity under Nonlinear Phase Modulation Effects and Memory Less
19(1)
2.5 BER, SER, and Lower Bound
20(3)
2.5.1 Bit-Error Rate (BER) and Symbol-Error Rate (SER)
20(2)
2.5.2 Lower Bound Capacity for Channel with Memory
22(1)
2.6 Coherent States and Quantum Limits
23(4)
2.6.1 Signal Representations and Receiver Structures
24(2)
2.6.2 Quantum Limits: ASK and BPSK Modulated Coherent States
26(1)
2.6.2.1 Binary ASK "1" and "0"
27(1)
2.6.2.2 BPSK under Strong LO Mixing Coherent Detection and PDP
27(1)
2.7 Quantum Limit of Optical Receivers under Different Modulation Formats
27(8)
2.7.1 Direct Detection
28(2)
2.7.2 Coherent Detection
30(1)
2.7.3 Coherent Detection with Matched Filter
30(1)
2.7.3.1 Coherent ASK Systems
30(2)
2.7.3.2 Coherent Phase and Frequency Shift Keying Systems
32(3)
2.8 BER of Higher Order M-ary QAM
35(2)
2.9 Remarks
37(2)
References
37(2)
Chapter 3 Optical Coherent Reception and Noise Processes
39(42)
3.1 Introduction
39(1)
3.2 Coherent Receiver Components
40(1)
3.3 CoD
41(15)
3.3.1 Optical Heterodyne Detection
43(2)
3.3.1.1 ASK Coherent System
45(2)
3.3.1.2 PSK Coherent System
47(1)
3.3.1.3 Differential Detection
47(1)
3.3.1.4 FSK Coherent System
48(1)
3.3.2 Optical Homodyne Detection
49(1)
3.3.2.1 Detection and OPLL
49(2)
3.3.2.2 Quantum Limit Detection
51(1)
3.3.2.3 Linewidth Influences
51(5)
3.3.3 Optical Intradyne Detection
56(1)
3.4 Self-Coherent Detection and Electronic DSP
56(1)
3.5 Electronic Amplifiers: Responses and Noises
57(4)
3.5.1 Introduction
57(1)
3.5.2 Wide Band TIAs
58(1)
3.5.2.1 Single Input, Single Output
59(1)
3.5.2.2 Differential Inputs, Single/Differential Output
59(1)
3.5.3 Amplifier Noise Referred to Input
59(2)
3.6 DSP Systems and Coherent Optical Reception
61(17)
3.6.1 DSP-Assisted Coherent Detection
61(1)
3.6.1.1 DSP-Based Reception Systems
62(1)
3.6.2 Coherent Reception Analysis
62(1)
3.6.2.1 Sensitivity
62(5)
3.6.2.2 Shot Noise-Limited Receiver Sensitivity
67(1)
3.6.2.3 Receiver Sensitivity under Nonideal Conditions
67(1)
3.6.3 Digital Processing Systems
68(1)
3.6.3.1 Effective Number of Bits
69(7)
3.6.3.2 Digital Processors
76(2)
3.7 Concluding Remarks
78(3)
References
79(2)
Chapter 4 Optical Noncoherent Reception and Noises Processes
81(30)
4.1 Introduction
81(1)
4.2 Optical Receivers in Various Systems
82(1)
4.3 Receiver Components
83(2)
4.3.1 Photodiodes
84(1)
4.3.1.1 PIN Photodiode
84(1)
4.3.1.2 Avalanche Photodiodes
84(1)
4.3.1.3 Quantum Efficiency and Responsivity
84(1)
4.3.1.4 High-Speed PDs
85(1)
4.4 Detection and Noises
85(5)
4.4.1 Linear Channel
86(1)
4.4.2 Data Recovery
86(1)
4.4.3 Noises in PDs
86(1)
4.4.4 Receiver Noises
87(1)
4.4.4.1 Shot Noises
87(1)
4.4.4.2 Quantum Shot Noise
87(1)
4.4.4.3 Thermal Noise
88(1)
4.4.5 Noise Calculations
88(2)
4.5 Performance Calculations for Binary Digital Optical Systems
90(12)
4.5.1 Signals Received
91(1)
4.5.1.1 Case (a): OFF or a Transmitted "0" is Received
91(1)
4.5.1.2 Case (b): ON Transmitted "1" is Received
91(1)
4.5.2 Probability Distribution
92(1)
4.5.3 Minimum Average Optical Received Power
93(2)
4.5.3.1 Fundamental Limit: Direct Detection
95(1)
4.5.3.2 Equalized Signal Output
95(1)
4.5.3.3 Photodiode Shot Noise
96(1)
4.5.4 Total Output Noises and Pulse Shape Parameters
97(1)
4.5.4.1 FET Front End Optical Receiver
98(1)
4.5.4.2 BJT Front End Optical Receiver
99(3)
4.6 An HEMT Matched Noise Network Preamplifier
102(6)
4.6.1 Noise Theory and Equivalent Input Noise Current
104(4)
4.7 Remarks
108(3)
Appendix A Noise Equations in Small Signal Amplifiers
108(2)
References
110(1)
Chapter 5 Noise Suppression Techniques in Balanced Receiver
111(20)
5.1 Analytical Noise Expressions
113(1)
5.2 Noise Generators
114(1)
5.3 Equivalent Input Noise Current
114(3)
5.4 Pole-Zero Pattern and Dynamics
117(3)
5.5 Responses and Noises Measurements
120(5)
5.5.1 Rise-Time and 3 dB Bandwidth
120(2)
5.5.2 Noise Measurement and Suppression
122(1)
5.5.3 Requirement for Quantum Limit
122(1)
5.5.4 Excess Noise Cancellation Technique
123(1)
5.5.5 Excess Noise Measurement
123(2)
5.6 Remarks
125(1)
5.7 Broadband Low Noise High Transfer Impedance Balanced Differential TIA Optical Receiver
125(6)
Appenidx A Noise Equations
126(3)
Appendix B Noises in Differential TIA
129(1)
References
130(1)
Chapter 6 DSP-Based Coherent Optical Transmission Systems
131(32)
6.1 Introduction
131(1)
6.2 Quadrature Phase-Shift Keying Systems
131(8)
6.2.1 Carrier Phase Recovery
131(1)
6.2.2 112G QPSK Coherent Transmission Systems
132(3)
6.2.3 I-Q Imbalance Estimation Results
135(1)
6.2.4 Skew Estimation
135(3)
6.2.5 Fractionally Spaced Equalization of CD and PMD
138(1)
6.2.6 Linear, Nonlinear Equalization, and Backpropagation Compensation of Linear and Nonlinear Phase Distortion
139(1)
6.3 16-QAM Systems
139(5)
6.4 Tera-Bits/s Superchannel Transmission Systems
144(17)
6.4.1 Overview
144(1)
6.4.2 Nyquist Pulse and Spectra
144(2)
6.4.3 Superchannel System Requirements
146(1)
6.4.4 System Structure
147(1)
6.4.4.1 DSP-Based Coherent Receiver
147(2)
6.4.4.2 Optical Fourier Transform-Based Structure
149(1)
6.4.4.3 Processing
149(4)
6.4.5 Timing Recovery in Nyquist QAM Channel
153(2)
6.4.6 128 Gbps 16-QAM Superchannel Transmission
155(1)
6.4.7 450 Gbps 32QAM Nyquist Transmission Systems
156(2)
6.4.8 DSP-Based Heterodyne Coherent Reception Systems
158(3)
6.5 Concluding Remarks
161(2)
References
161(2)
Chapter 7 Optical Modulation and Phasor Vector Representation
163(44)
7.1 Optical Modulators
163(5)
7.1.1 Phase Modulators
164(1)
7.1.2 Intensity Modulators
164(1)
7.1.2.1 Phasor Representation and Transfer Characteristics
165(1)
7.1.2.2 Chirp-Free Optical Modulators
166(1)
7.1.3 Structures of Photonic Modulators
167(1)
7.2 Return-to-Zero Optical Pulses
168(6)
7.2.1 Generation
168(2)
7.2.2 Phasor Representation
170(1)
7.2.2.1 Phasor Representation of CSRZ Pulses
171(1)
7.2.2.2 Phasor Representation of RZ33 Pulses
172(2)
7.3 Differential Phase-Shift Keying
174(1)
7.3.1 Background
174(1)
7.3.2 Optical DPSK Transmitter
174(1)
7.4 Generation of Modulation Formats
175(19)
7.4.1 Amplitude Modulation OOK-RZ Formats
176(1)
7.4.2 Amplitude Modulation CSRZ Formats
177(1)
7.4.3 Discrete Phase Modulation NRZ Formats
178(1)
7.4.3.1 Differential Phase-Shift Keying
178(1)
7.4.3.2 Differential Quadrature PSK
179(1)
7.4.3.3 NRZ-DPSK
179(1)
7.4.3.4 RZ-DPSK
180(1)
7.4.3.5 Generation of M-ary Amplitude Differential Phase-Shift Keying (M-ary ADPSK) Using One MZIM
180(1)
7.4.4 Continuous Phase Modulation
181(1)
7.4.4.1 Linear and Nonlinear MSK
182(2)
7.4.4.2 MSK as a Special Case of CPFSK
184(1)
7.4.4.3 MSK as an Offset Differential Quadrature Phase-Shift Keying
185(1)
7.4.4.4 Configuration of Photonic MSK Transmitter Using Two Cascaded E-OPMs
186(1)
7.4.4.5 Configuration of Optical MSK Transmitter Using Mach-Zehnder Intensity Modulators: I-Q Approach
187(2)
7.4.5 Single-Sideband (SSB) Optical Modulators
189(1)
7.4.5.1 Operating Principles
189(1)
7.4.6 Multicarrier Multiplexing (MCM) Optical Modulators
189(3)
7.4.7 Spectra of Modulation Formats
192(2)
7.5 Spectral Characteristics of Digital Modulation Formats
194(2)
7.6 I-Q Integrated Modulators
196(3)
7.6.1 In-Phase and Quadrature Phase Optical Modulators
196(2)
7.6.2 I-Q Modulator and Electronic Digital Multiplexing for Ultrahigh Bit Rates
198(1)
7.7 DAC for DSP-Based Modulation and Transmitter
199(5)
7.7.1 Digital-to-Analog Converter
199(1)
7.7.2 Structure
200(1)
7.7.3 Generation of I- and Q-Components
201(3)
7.8 Remarks
204(3)
References
205(2)
Chapter 8 Differential Phase-Shift Keying Photonic Systems
207(42)
8.1 Introduction
207(1)
8.2 Optical DPSK Modulation and Formats
208(10)
8.2.1 Generation of RZ Pulses
209(1)
8.2.2 Phasor Representation
210(2)
8.2.3 Phasor Representation of CSRZ Pulses
212(1)
8.2.4 Phasor Representation of RZ33 Pulses
213(1)
8.2.5 Discrete Phase Modulation---DPSK
214(1)
8.2.5.1 Principles of DPSK and Theoretical Treatment of DPSK and DQPSK Transmission
214(1)
8.2.5.2 Optical DPSK Transmitter
214(2)
8.2.6 DPSK Balanced Receiver
216(2)
8.3 DPSK Transmission Experiment
218(9)
8.3.1 Components and Operational Characteristics
218(1)
8.3.2 Spectra of Modulation Formats
218(1)
8.3.3 Dispersion Tolerance of Optical DPSK Formats
218(4)
8.3.4 Optical Filtering Effects
222(3)
8.3.5 Performance of CSRZ-DPSK over a Dispersion-Managed Optical Transmission Link
225(1)
8.3.6 Mutual Impact of Adjacent 10G and 40G DWDM Channels
225(2)
8.4 DQPSK Modulation Format
227(7)
8.4.1 DQPSK
227(3)
8.4.2 Offset DQPSK Modulation Format
230(2)
8.4.2.1 Influence of the Minimum Symbol Distance on the Receiver Sensitivity
232(1)
8.4.2.2 Influence of Self-Homodyne Detection on the Receiver Sensitivity
233(1)
8.4.3 MATLAB Simulink Model
233(1)
8.4.3.1 The Simulink Model
233(1)
8.4.3.2 Eye Diagrams
234(1)
8.5 Comparisons of Different Formats and ASK and DPSK
234(9)
8.5.1 BER and Receiver Sensitivity
234(1)
8.5.1.1 RZ-ASK and NRZ-ASK
234(4)
8.5.1.2 RZ-DPSK and NRZ-DQPSK
238(1)
8.5.1.3 RZ-ASK and NRZ-DQPSK
239(1)
8.5.2 Dispersion Tolerance
239(1)
8.5.3 Polarization Mode Dispersion Tolerance
240(1)
8.5.4 Robustness toward Nonlinear Effects
241(1)
8.5.4.1 Robustness toward SPM
241(1)
8.5.4.2 Robustness toward XPM
241(1)
8.5.4.3 Robustness toward FWM
242(1)
8.5.4.4 Robustness toward SRS
243(1)
8.5.4.5 Robustness toward SBS
243(1)
8.6 Remarks
243(6)
Appendix: MATLAB Simulink Model for DQPSK Optical System
244(4)
References
248(1)
Chapter 9 Multilevel Amplitude and Phase-Shift Keying Optical Transmission Systems
249(66)
9.1 Introduction
249(19)
9.1.1 Amplitude and Differential Phase Modulation
251(1)
9.1.1.1 Amplitude Shift Keying Modulation
251(3)
9.1.1.2 Differential Phase Modulation
254(6)
9.1.2 Comparison of Different Optical Modulation Formats
260(1)
9.1.3 Multilevel Optical Transmitter
261(4)
9.1.3.1 Single Dual-Drive MZIM Transmitter for MADPSK
265(3)
9.2 MADPSK Optical Transmission
268(17)
9.2.1 Performance Evaluation
269(1)
9.2.2 Implementation of MADPSK Transmission Models
269(1)
9.2.2.1 System Modeling
269(1)
9.2.3 Transmitter Model
270(1)
9.2.4 Receiver Model
270(3)
9.2.5 Transmission Fiber and Dispersion-Compensation Fiber Model
273(1)
9.2.6 Transmission Performance
274(1)
9.2.6.1 Signal Spectrum, Signal Constellation, and Eye Diagram
274(2)
9.2.6.2 BER Evaluation
276(5)
9.2.7 Critical Issues
281(1)
9.2.7.1 Noise Mechanism and Noise Effect on MADPSK
281(1)
9.2.7.2 Transmission Fiber Impairments
282(1)
9.2.7.3 Nonlinear Effects on MADPSK
283(1)
9.2.8 Offset Detection
284(1)
9.3 Star 16-QAM Optical Transmission
285(16)
9.3.1 Remarks
285(1)
9.3.2 Design of 16-QAM Signal Constellation
286(1)
9.3.3 Signal Constellation
286(1)
9.3.4 Optimum Ring Ratio for Star Constellation
287(1)
9.3.4.1 Square 16-QAM
288(1)
9.3.4.2 Offset-Square 16-QAM
288(1)
9.3.5 Detection Methods
289(1)
9.3.5.1 Direct Detection
289(1)
9.3.5.2 Coherent Detection
289(1)
9.3.6 Star 16-QAM Format
290(1)
9.3.6.1 Transmitter Design
290(2)
9.3.6.2 Receiver for 16-StarQAM
292(1)
9.3.6.3 Coherent Detection Receiver without Phase Estimation
293(1)
9.3.6.4 Coherent Detection Receiver with Phase Estimation
294(1)
9.3.6.5 Direct Detection Receiver
295(1)
9.3.6.6 Coherent Receiver without Phase Estimation
296(5)
9.3.6.7 Remarks
301(1)
9.4 Other Multilevel and Multisubcarrier Modulation Formats for 100 Gb/s Ethernet Transmission
301(10)
9.4.1 Multilevel Modulation
302(1)
9.4.2 Optical Orthogonal Frequency Division Multiplexing
303(3)
9.4.3 100 Gb/s 8-DPSK_2-ASK 16-Star QAM
306(1)
9.4.3.1 Introduction
306(1)
9.4.3.2 Configuration of 8-DPSK_2-ASK Optical Transmitter
306(2)
9.4.3.3 Configuration of 8-DPSK_2-ASK Detection Scheme
308(1)
9.4.3.4 Transmission Performance of 100 Gb/s 8-DPSK_2-ASK Scheme
309(1)
9.4.3.5 Power Spectrum
309(1)
9.4.3.6 Receiver Sensitivity and DT
309(2)
9.4.3.7 Long-Haul Transmission
311(1)
9.5 Concluding Remarks
311(4)
9.5.1 Offset MADPSK Modulation
312(1)
9.5.2 Multilevel Amplitude-Minimum Shift Keying Modulation
312(1)
9.5.3 Star QAM Coherent Detection
313(1)
References
313(2)
Chapter 10 Self-Coherent Reception of Continuous Phase Modulated Signals
315(22)
10.1 Introduction
315(2)
10.2 Generation of Optical MSK Modulated Signals
317(8)
10.2.1 Optical MSK Transmitter Using Two-Cascaded Electro-Optic Phase Modulators
317(2)
10.2.2 Detection of M-ary CPFSK Modulated Optical Signal
319(1)
10.2.3 Optical MSK Transmitter Using Parallel I-Q Mach-Zehnder Intensity Modulators
320(1)
10.2.3.1 Linear MSK
321(1)
10.2.3.2 Weakly Nonlinear MSK
321(1)
10.2.3.3 Strongly Nonlinear MSK
321(4)
10.2.4 Optical MSK Receivers
325(1)
10.3 Optical Binary-Amplitude MSK Format
325(9)
10.3.1 Generation
325(1)
10.3.2 Optical MSK
326(2)
10.3.3 Numerical Results and Discussions
328(1)
10.3.3.1 Transmission Performance of Linear and Nonlinear Optical MSK Systems
328(3)
10.3.3.2 Transmission Performance of Binary Amplitude Optical MSK Systems
331(3)
10.4 Remarks
334(3)
References
334(3)
Chapter 11 Partial Responses and Single-Sideband Optical Systems
337(52)
11.1 Introduction
337(1)
11.2 Partial Responses: DB Modulation Formats
338(13)
11.2.1 Remarks
338(1)
11.2.2 DBM Formatter
339(3)
11.2.3 Electro-Optic DB Transmitter
342(1)
11.2.4 The DB Encoder
342(1)
11.2.5 The External Modulator
342(2)
11.2.6 MATLAB Simulink Structure of DB Transmitters and Precoder
344(3)
11.2.7 Alternative Phase DB Transmitter
347(1)
11.2.8 Fiber Propagation
348(3)
11.3 DB Self-Coherent Detection Receiver
351(2)
11.4 System Transmission and Performance
353(18)
11.4.1 The DB Encoder
353(1)
11.4.2 The Transmitter
354(1)
11.4.3 Transmission Performance
354(4)
11.4.4 Alternating Phase and Variable Pulse Width DB: Experimental Set-Up and Transmission Performance
358(1)
11.4.4.1 Transmission Set-Up
358(2)
11.4.4.2 Testbed for Variable Pulse Width Alternating Phase DB Modulation Optical Transmission
360(8)
11.4.5 DBM and Feed Forward Equalization Using Digital Signal Processing
368(2)
11.4.6 Remarks
370(1)
11.5 DWDM VSB Modulation Format Optical Transmission
371(11)
11.5.1 Transmission System
372(2)
11.5.2 VSB Filtering and DWDM Channels
374(2)
11.5.3 Transmission Dispersion and Compensation Fibers
376(2)
11.5.4 Transmission Performance
378(1)
11.5.4.1 Effects of Channel Spacing on Q Factor
378(2)
11.5.4.2 Effects of GVD on Q Factor
380(1)
11.5.4.3 Effects of Filter Passband on the Q Factor
380(2)
11.6 Single-Sibeband Modulation
382(1)
11.6.1 Hilbert Transform SSB MZIM Simulation
382(1)
11.6.2 SSB Demodulator Simulation
382(1)
11.7 Concluding Remarks
382(7)
References
386(3)
Chapter 12 Superchannel Tera-Bits/s Transmission
389(50)
12.1 Introduction
389(1)
12.1.1 Overview
389(1)
12.1.2 Organization of the
Chapter
390(1)
12.2 System Requirements and Specifications
390(2)
12.2.1 Requirements and Specifications
390(1)
12.2.2 Generic System Architecture of a Superchannel 1 Tbps Transmission System
390(2)
12.3 Multicarrier Nyquist Transmission System
392(7)
12.3.1 Nyquist Signal Generation Using DAC by Equalization in Frequency Domain
393(2)
12.3.2 Function Modules of a Nyquist-WDM System
395(2)
12.3.3 DSP Architecture
397(2)
12.4 Key Hardware Subsystems for an Offline Demo System
399(19)
12.4.1 Comb-Generation Techniques
399(1)
12.4.1.1 Recirculating Frequency Shifting
399(1)
12.4.1.2 Nonlinear Excitation Comb Generation and Multiplexed Laser Sources
399(1)
12.4.2 Hardware Set-Up of Comb Generators
399(1)
12.4.2.1 RCFS Comb Generator
399(3)
12.4.2.2 Nonlinear Comb Generator
402(1)
12.4.3 Multicarrier Modulation
403(1)
12.4.3.1 Generation of Multisubcarriers for Tbps Superchannels
403(7)
12.4.3.2 Supercomb Generator as Dummy Channels
410(1)
12.4.3.3 2 Tbps and 1 Tbps Optical Transmitter at Different Symbol Rates
410(1)
12.4.4 Digital-to-Analog Converter
411(1)
12.4.4.1 Structure
411(2)
12.4.4.2 Generation of I- and Q-Components
413(2)
12.4.4.3 Optical Modulation
415(2)
12.4.4.4 Synchronization
417(1)
12.4.4.5 Modular Hardware Platform
417(1)
12.5 Non-DCF 1 Tbps and 2 Tbps Superchannel Transmission Performance
418(15)
12.5.1 Transmission Platform
418(1)
12.5.2 Performance
419(1)
12.5.2.1 Tbps Initial Transmission Using Three Subchannel Transmission Test
419(3)
12.5.2.2 1 Tbps, 2 Tbps, or N Tbps Transmission
422(4)
12.5.2.3 Tbps Transmission Incorporating FEC at Coherent DSP Receiver
426(2)
12.5.2.4 Coding Gain of FEC and Transmission Simulation
428(1)
12.5.2.5 MIMO Filtering Process to Extend Transmission Reach
429(4)
12.6 Multicarrier Scheme Comparison
433(2)
12.7 Concluding Remarks
435(4)
Appendix A Technical Data of Standard Single-Mode Optical Fiber
436(2)
Appendix B DAC Operating Conditions
438(1)
Index 439
Le Nguyen Binh is a technical director at the European Research Center of Huawei Technologies Co., Ltd. in Munich, Germany. He is the editor, author, and/or coauthor of numerous books, as well as the editor of CRC Press Optics and Photonics series.