Muutke küpsiste eelistusi

E-raamat: Non-perturbative Description of Quantum Systems

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 894
  • Ilmumisaeg: 18-Dec-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319130064
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 894
  • Ilmumisaeg: 18-Dec-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319130064

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory. In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
1 Capabilities of Approximate Methods in Quantum Theory 1(26)
1.1 Effectiveness Criteria for Approximate Methods
2(4)
1.2 Perturbation Theory for Solution of Stationary Schrodinger Equation
6(7)
1.3 Non-perturbative Methods for Stationary Schrodinger Equation
13(11)
References
24(3)
2 Basics of the Operator Method 27(54)
2.1 The Zeroth Approximation Choice
28(10)
2.2 Iteration Scheme for Calculation of the Successive Approximations
38(7)
2.3 Calculation Accuracy of the Wave Function
45(3)
2.4 Iterative Solution for Inverse Problem
48(3)
2.5 Non-perturbative Approach in the Theory of Classical Nonlinear Oscillations
51(8)
2.6 Why Do the OM Successive Approximations Converge?
59(6)
2.7 Calculation of Energy and Level Width of Quasi-Stationary States
65(7)
2.8 States with a Broken Symmetry (Integrals of Motion)
72(7)
References
79(2)
3 Applications of OM for One-Dimensional Systems 81(48)
3.1 Anharmonic Oscillator with High Anharmonicity
82(6)
3.2 Anharmonic Oscillator with Non-symmetric Potential
88(4)
3.3 Morse Potential
92(3)
3.4 Solution of the Mathieu Equation
95(8)
3.5 Quasienergies and Wave Functions of the Two-Level System in a Classical Monochromatic Field
103(6)
3.6 More Applications of Operator Method
109(8)
3.7 Operator Method for Uniformly Suitable Approximation of Integrals and Sums
117(10)
References
127(2)
4 Operator Method for Quantum Statistics 129(58)
4.1 General Algorithm for Calculation of PF
129(4)
4.2 Statistics of Non-interacting Systems with One-Dimensional Energy Spectrum
133(27)
4.3 Coupled Quantum Anharmonic Oscillators (CQAO)
160(6)
4.4 Density Matrix
166(10)
4.5 Calculation of Physical Characteristics
176(8)
References
184(3)
5 Quantum Systems with Several Degrees of Freedom 187(28)
5.1 Analytical Approximation for the Energy Levels of CQAO
188(7)
5.2 Comparison with Known Analytical and Numerical Results
195(8)
5.3 Regular Perturbation Theory for Two-Electron Atoms
203(5)
5.4 Energies of the Excited States
208(5)
References
213(2)
6 Two-Dimensional Exciton in Magnetic Field with Arbitrary Strength 215(36)
6.1 The Schrodinger Equation through the Levi-Civita Transformation
216(2)
6.2 Solving the Schrodinger Equation by the Operator Method
218(6)
6.3 Exact Numerical Solutions
224(5)
6.4 Schr6dinger Equation with Asymptotic Components
229(4)
6.5 Highly Accurate Analytical Solutions
233(8)
6.6 OM Application to Complex Two-Dimensional Atomic Systems
241(8)
References
249(2)
7 Atoms in the External Electromagnetic Fields 251(36)
7.1 Hydrogen-Like Atom and Harmonic Oscillator
252(7)
7.2 Analytical Estimate for Rydberg States of a Hydrogen Atom in an Electric Field
259(5)
7.3 Iterative Calculation of Energy for Quasi-Stationary States
264(2)
7.4 Operator Method for Hydrogen Atom in Magnetic Field
266(5)
7.5 Two Level System in a Single-Mode Quantum Field
271(14)
References
285(2)
8 Many-Electron Atoms 287(44)
8.1 Oscillator Model of Atom
289(5)
8.2 Continuous Oscillator Model in the Limit Z >> 1
294(9)
8.3 Coulomb Based Atomic Model
303(20)
8.4 Effective Charges Model for Many-Electron Atom
323(6)
References
329(2)
9 Systems with Infinite Number of Degrees of Freedom 331(28)
9.1 OM for Strong Coupling Polaron
332(8)
9.2 One-Dimensional Polaron
340(9)
9.3 UAA for Three-Dimensional Polaron Energy
349(6)
9.4 Particle-Field Interaction Model with a Divergent Perturbation Theory
355(2)
References
357(2)
Index 359