Muutke küpsiste eelistusi

E-raamat: Noncommutative Geometry and Optimal Transport

  • Formaat: 223 pages
  • Sari: Contemporary Mathematics
  • Ilmumisaeg: 01-Nov-2017
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470435608
  • Formaat - PDF+DRM
  • Hind: 143,21 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 223 pages
  • Sari: Contemporary Mathematics
  • Ilmumisaeg: 01-Nov-2017
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470435608

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume contains the proceedings of the Workshop on Noncommutative Geometry and Optimal Transport, held on November 27, 2014, in Besançon, France.

The distance formula in noncommutative geometry was introduced by Connes at the end of the 1980s. It is a generalization of Riemannian geodesic distance that makes sense in a noncommutative setting, and provides an original tool to study the geometry of the space of states on an algebra. It also has an intriguing echo in physics, for it yields a metric interpretation for the Higgs field. In the 1990s, Rieffel noticed that this distance is a noncommutative version of the Wasserstein distance of order 1 in the theory of optimal transport. More exactly, this is a noncommutative generalization of Kantorovich dual formula of the Wasserstein distance.

Connes distance thus offers an unexpected connection between an ancient mathematical problem and the most recent discovery in high energy physics. The meaning of this connection is far from clear. Yet, Rieffelsobservation suggests that Connes distance may provide an interesting starting point for a theory of optimal transport in noncommutative geometry.

This volume contains several review papers that will give the reader an extensive introduction to the metric aspect of noncommutative geometry and its possible interpretation as a Wasserstein distance on a quantum space, as well as several topic papers.
Pierre Martinetti, Università di Genova, Italy.

Jean-Christophe Wallet, CNRS, Université Paris-Sud 11, Orsay, France.