Muutke küpsiste eelistusi

E-raamat: Noncontact Atomic Force Microscopy: Volume 3

Edited by , Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: NanoScience and Technology
  • Ilmumisaeg: 18-May-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319155883
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: NanoScience and Technology
  • Ilmumisaeg: 18-May-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319155883

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents the latest developments in noncontact atomic force microscopy. It deals with the following outstanding functions and applications that have been obtained with atomic resolution after the publication of volume 2: (1) Pauli repulsive force imaging of molecular structure, (2) Applications of force spectroscopy and force mapping with atomic resolution, (3) Applications of tuning forks, (4) Applications of atomic/molecular manipulation, (5) Applications of magnetic exchange force microscopy, (6) Applications of atomic and molecular imaging in liquids, (7) Applications of combined AFM/STM with atomic resolution, and (8) New technologies in dynamic force microscopy. These results and technologies are now expanding the capacity of the NC-AFM with imaging functions on an atomic scale toward making them characterization and manipulation tools of individual atoms/molecules and nanostructures, with outstanding capability at the level of molecular, atomic, and subatomic resolution. Since the publication of vol. 2 of the book Noncontact Atomic Force Microscopy in 2009 the noncontact atomic force microscope, which can image even insulators with atomic resolution, has achieved remarkable progress. The NC-AFM is now becoming crucial for nanoscience and nanotechnology.

1 Introduction
1(8)
Seizo Morita
1.1 Rapidly Developing High Performance AFM
1(6)
1.1.1 Tip Modification
2(1)
1.1.2 Control of Atomic Force
3(2)
1.1.3 Pauli Repulsive Force Imaging
5(1)
1.1.4 Atomic/Submolecular Imaging in Liquids
6(1)
1.2 Summary
7(2)
References
7(2)
2 3D Force Field Spectroscopy
9(20)
Mehmet Z. Baykara
Udo D. Schwarz
2.1 Introduction
9(2)
2.2 Experimental Methodology
11(3)
2.3 Sources of Artifacts in 3D Force Field Spectroscopy
14(6)
2.3.1 Thermal Drift
14(1)
2.3.2 Piezo Nonlinearities
15(1)
2.3.3 Tip Asymmetry
16(3)
2.3.4 Tip Elasticity
19(1)
2.4 Comparison of Data Acquisition and Processing Strategies for 3D Force Field Spectroscopy
20(2)
2.5 Combination of 3D Force Field Spectroscopy with Scanning Tunneling Microscopy: 3D-AFM/STM
22(4)
2.6 Conclusions and Outlook
26(3)
References
27(2)
3 Simultaneous nc-AFM/STM Measurements with Atomic Resolution
29(22)
P. Hapala
M. Ondracek
O. Stetsovych
M. Svec
P. Jelinek
3.1 Introduction
29(3)
3.2 High-Resolution AFM/STM Images with Functionalized Tips
32(3)
3.3 Numerical Modeling of High-Resolution AFM/STM Images with Functionalized Tips
35(6)
3.4 Effect of Intra-molecular Charge on High-Resolution Images
41(4)
3.5 Conclusions and Outlook
45(6)
References
46(5)
4 Manipulation and Spectroscopy Using AFM/STM at Room Temperature
51(20)
Masayuki Abe
Yoshiaki Sugimoto
Seizo Morita
4.1 Introduction
51(2)
4.2 Relation Between Manipulation Probability and Tip Reactivity
53(6)
4.2.1 AFM Setup
53(1)
4.2.2 Vacancy Formation on the Si(111)-(7 x 7) Surface
54(1)
4.2.3 Confirmation of Tip Reactivity
55(1)
4.2.4 Atom Manipulation Procedures
55(1)
4.2.5 Relation Between Measured Force and Atom Manipulation Probability
56(2)
4.2.6 Tip Reactivity and Manipulation Capability
58(1)
4.2.7 Tip Reactivity and Spatial Resolution
59(1)
4.3 Inter-nanospace Atom Manipulation for Structuring Nanoclusters
59(12)
4.3.1 Method for Inter-nanospace Atom Manipulation
60(1)
4.3.2 AFM/STM Setup for the INSAM Operation
61(1)
4.3.3 Inter-nanospace Atom Manipulation of Various Elements
62(1)
4.3.4 Fabrication of Nanocluster Using Inter-nanospace Atom Manipulation
63(2)
4.3.5 Distance Spectroscopic Measurement During INSAM Operation
65(3)
References
68(3)
5 The Phantom Force
71(22)
Alfred John Weymouth
Franz J. Giessibl
5.1 Introduction and Background
71(9)
5.1.1 Frequency-Modulation Atomic Force Microscopy
72(2)
5.1.2 The Forces at Play at the Atomic Scale
74(1)
5.1.3 Electrostatic Attraction Between Metal Surfaces
75(1)
5.1.4 Conductance in an Atomic-Scale Junction
76(1)
5.1.5 Including Resistance in Our Overall Picture of Tunneling
77(1)
5.1.6 Summary
78(2)
5.2 Observations
80(10)
5.2.1 Characterizing the Phantom Force
83(3)
5.2.2 Kelvin Probe Force Microscopy
86(2)
5.2.3 Observations on H-Terminated Si(100)
88(1)
5.2.4 Molecular Adsorbate on Graphene
89(1)
5.3 Concluding Remarks and Outlook
90(3)
References
91(2)
6 Non-contact Friction
93(18)
Marcin Kisiel
Markus Samadashvili
Urs Gysin
Ernst Meyer
6.1 Introduction: Dissipation at Large Separation
93(2)
6.2 The Pendulum AFM System
95(3)
6.2.1 The Microscope
95(1)
6.2.2 Internal Friction of the Cantilever
96(2)
6.3 Non-contact Friction Due to Tip-Sample Interaction
98(1)
6.4 Origins of Non-contact Friction
99(2)
6.4.1 Phononic Friction
99(1)
6.4.2 Joule Dissipation
100(1)
6.4.3 Van der Waals Friction
101(1)
6.5 Dissipation at Large Separation
101(2)
6.6 Suppression of Electronic Friction in the Superconducting State
103(2)
6.7 The Non-contact Friction Due to Phase Slips of the Charge Density Wave (CDW) in NbSe2 Sample
105(4)
6.8 Conclusion
109(2)
References
110(1)
7 Magnetic Exchange Force Spectroscopy
111(16)
Alexander Schwarz
Stefan Heinze
7.1 Introduction
111(1)
7.2 The Tip-Sample System
112(2)
7.2.1 Sample Preparation
112(1)
7.2.2 Tip Preparation
113(1)
7.3 Determining the Magnetic Exchange Interaction
114(6)
7.3.1 Data Acquisition Procedure
114(2)
7.3.2 First-Principles Calculations
116(3)
7.3.3 Comparison Between Theory and Experiment
119(1)
7.4 Magnetic Exchange Induced Switching
120(3)
7.4.1 Experimental Observation
120(2)
7.4.2 Modified Neel-Brown Model
122(1)
7.4.3 Magnetic Stability of Tips
122(1)
7.5 Conclusion
123(4)
References
124(3)
8 Revealing Subsurface Vibrational Modes by Atomic-Resolution Damping Force Spectroscopy
127(20)
Makoto Ashino
Roland Wiesendanger
8.1 Introduction
127(1)
8.2 Damping Force Spectroscopy
128(3)
8.2.1 Dynamic AFM Operation
128(1)
8.2.2 The Damping Signals ΔE
128(3)
8.3 DFS on Complex Molecular Systems
131(16)
8.3.1 Supramolecular Assembly
131(2)
8.3.2 Dynamic AFM Instrumentation
133(1)
8.3.3 Topography and Damping on Peapods
134(3)
8.3.4 Packing and Optimum Geometry of Peapods
137(3)
8.3.5 Molecular Dynamics Simulations
140(3)
8.3.6 Summary
143(1)
References
144(3)
9 Self-assembly of Organic Molecules on Insulating Surfaces
147(26)
Felix Kling
Ralf Bechstein
Philipp Rahe
Angelika Kuhnle
9.1 Introduction
148(1)
9.2 Self-assembly Principles
149(10)
9.2.1 General Considerations
149(8)
9.2.2 Special Situation on Insulator Surfaces
157(2)
9.3 Studied Systems---State of the Art
159(6)
9.3.1 Strategies for Anchoring
159(5)
9.3.2 Decoupling Molecule-Surface and Intermolecular Interactions
164(1)
9.4 Outlook
165(8)
References
166(7)
10 Atomic-Scale Contrast Formation in AFM Images on Molecular Systems
173(22)
Fabian Schulz
Sampsa Hamalainen
Peter Liljeroth
10.1 Introduction
173(1)
10.2 Tip Reactivity and Atomic Contrast
174(5)
10.2.1 Well-Defined Tips and a Model Surface
174(2)
10.2.2 Force Spectroscopy with Reactive and Non-Reactive Tips on Epitaxial Graphene
176(2)
10.2.3 (Non-)Reactivity Determines the Imaging Contrast
178(1)
10.3 Relating Electronic Properties with Atomic Structure
179(4)
10.3.1 AFM Versus STM and Finite-Size Effects in Graphene
180(2)
10.3.2 Imaging Defects in Graphene Nanoribbons
182(1)
10.4 Understanding Measurements with a Flexible Tip Apex
183(9)
10.4.1 Measuring Interaction Energies with a Molecule-Terminated Tip
183(1)
10.4.2 Can Atomic Positions Be Measured Quantitatively by AFM with Molecule-Terminated Tips?
184(2)
10.4.3 Can AFM Images Be Background Corrected on the Atomic Scale?
186(2)
10.4.4 AFM Contrast on Intra- and Intermolecular Bonds
188(4)
10.5 Conclusions
192(3)
References
193(2)
11 Single Molecule Force Spectroscopy
195(28)
Remy Pawlak
Shigeki Kawai
Thilo Glatzel
Ernst Meyer
11.1 Introduction: Towards Single Molecule Investigations with nc-AFM
196(1)
11.2 Experimental Requirements
197(6)
11.2.1 Single Molecules at Surfaces
197(1)
11.2.2 Three-Dimensional Spectroscopic Measurements
198(5)
11.3 Probing Mechanical Properties at the Sub-molecular Level
203(10)
11.3.1 3D-Force Field of Fullerene C60
203(3)
11.3.2 Directed Rotation of Porphyrins
206(4)
11.3.3 Vertical Manipulation of Long Molecular Chains
210(2)
11.3.4 Lateral Manipulation of Single Porphyrin: Atomic-Scale Friction Pattern
212(1)
11.4 Prospects in Probing the Electronic Properties of Single Molecules
213(6)
11.4.1 LCPD Mapping of a Donor-Acceptor Molecule
214(1)
11.4.2 LCPD Mapping of Metal-Phtalocyanin on Thin Insulating Films
215(1)
11.4.3 Towards Probing Optical Properties of Single Molecules
216(3)
11.5 Conclusion and Perspectives
219(4)
References
220(3)
12 Atomic Resolution on Molecules with Functionalized Tips
223(24)
Leo Gross
Bruno Schuler
Fabian Mohn
Nikolaj Moll
Jascha Repp
Gerhard Meyer
12.1 Experimental Set-up and Tip Functionalization
223(4)
12.2 The Origin of Atomic Contrast
227(5)
12.3 Bond-Order Discrimination and CO-Tip Relaxation
232(5)
12.4 Adsorption Geometry Determination
237(2)
12.5 Molecular Structure Identification
239(2)
12.6 Kelvin Probe Force Microscopy with Sub-molecular Resolution
241(2)
12.7 Summary
243(4)
References
244(3)
13 Mechanochemistry at Silicon Surfaces
247(28)
Adam Sweetman
Samuel Paul Jarvis
Philip Moriarty
13.1 Introduction
247(2)
13.2 Experimental Methods
249(2)
13.2.1 Force Extraction
250(1)
13.3 Computational Methods
251(1)
13.4 Si(100) Results
252(12)
13.4.1 The Si(100) Surface Structure Viewed by NC-AFM
252(2)
13.4.2 Dimer Manipulation by Mechanical Force
254(6)
13.4.3 Energetic Pathway to Manipulation
260(3)
13.4.4 Visualising the Effect of Surface Strain on Dimer Stability
263(1)
13.5 Imaging and Manipulation with Reactive and Passivated Tip Structures
264(4)
13.6 The Hydrogen Passivated Silicon Surface: H: Si(100)
268(3)
13.6.1 Feasibility of Mechanical Extraction of Hydrogen
270(1)
13.7 Summary
271(4)
References
272(3)
14 Scanning Tunnelling Microscopy with Single Molecule Force Sensors
275(28)
R. Temirov
F.S. Tautz
14.1 Introduction
275(4)
14.2 A Survey of Experimental Results
279(9)
14.2.1 Geometric Contrast in STM
279(1)
14.2.2 Tip Functionalization
280(3)
14.2.3 Image Distortions
283(2)
14.2.4 Structural Sensitivity
285(1)
14.2.5 Mixed Contrasts
285(2)
14.2.6 Further Image Features
287(1)
14.3 The Sensor-Transducer Model of Geometric STM Contrast
288(3)
14.4 A Unified Model of STM and AFM with Nanoscale Force Sensors
291(7)
14.5 Conclusion and Outlook
298(5)
References
300(3)
15 Nanostructured Surfaces of Doped Alkali Halides
303(24)
Clemens Barth
15.1 Introduction
303(1)
15.2 Low Defect Concentration---the Debye-Frenkel Layer
304(3)
15.3 High Defect Concentration---The Suzuki Phase
307(10)
15.3.1 Structure and Surface of the Suzuki Phase
308(1)
15.3.2 Surface Morphology
309(4)
15.3.3 Atomic Resolution and Identification
313(4)
15.4 Supported Nano-objects on the Suzuki Surface
317(10)
15.4.1 Metal Nanoparticles
317(3)
15.4.2 Functionalized Molecules
320(3)
References
323(4)
16 The Atomic Structure of Two-Dimensional Silica
327(28)
Christin Buchner
Leonid Lichtenstein
Markus Heyde
Hans-Joachim Freund
16.1 Introduction
327(2)
16.2 The 2D Glass Model
329(1)
16.3 The Realization of an Amorphous Model System
330(1)
16.4 The Limits of Scanning Probe Methods
331(2)
16.5 Assignment of Atomic Positions
333(3)
16.6 Atomic Force Microscopy Challenges X-Ray Diffraction
336(10)
16.6.1 Structural Unit---Range I
337(2)
16.6.2 Interconnection of Silica Units---Range II
339(2)
16.6.3 Network Topology---Range III
341(4)
16.6.4 Density Fluctuations---Range IV
345(1)
16.7 Crystalline-Vitreous Interface in 2D Silica
346(2)
16.8 Topological Analyzes of Two-Dimensional Network Structures
348(2)
16.9 Summary
350(5)
References
351(4)
17 Imaging Molecules on Bulk Insulators Using Metallic Tips
355(24)
David Z. Gao
Alexander Schwarz
Alexander L. Shluger
17.1 Introduction
355(2)
17.2 Experimental Set-Up and Procedures
357(2)
17.2.1 Tip Preparation and Control
357(2)
17.3 Theoretical Methodology
359(1)
17.4 Chemical Resolution on NaCl(001) and NiO(001)
360(2)
17.5 Metallic Tip Characterization and Imaging Mechanisms
362(13)
17.5.1 Characterizing Metallic AFM Tips
363(3)
17.5.2 Explicit Determination of Tip Dipoles
366(4)
17.5.3 Imaging the CO Molecule
370(4)
17.5.4 Imaging Larger Polar Molecules
374(1)
17.6 Discussion and Conclusions
375(4)
References
377(2)
18 Simulating Solid-Liquid Interfaces in Atomic Force Microscopy
379(32)
Bernhard Reischl
Filippo Federici Canova
Peter Spijker
Matt Watkins
Adam Foster
18.1 Introduction
379(2)
18.2 Methodology
381(11)
18.2.1 Simulation Level
382(1)
18.2.2 Free Energy Calculations
383(2)
18.2.3 Simulation Setup
385(2)
18.2.4 Interactions
387(2)
18.2.5 Tips and Tricks
389(3)
18.3 Case Studies
392(10)
18.3.1 Simple Ionic Surfaces
392(3)
18.3.2 Calcite
395(3)
18.3.3 Molecular Crystal p-Nitroaniline
398(2)
18.3.4 Ionic Liquids
400(2)
18.4 Discussion
402(9)
References
403(8)
19 Recent Progress in Frequency Modulation Atomic Force Microscopy in Liquids
411(24)
Kei Kobayashi
Hirofumi Yamada
19.1 Brief Overview
411(4)
19.1.1 Introduction
411(1)
19.1.2 Characteristic Features in FM-AFM Solid-Liquid Interface Measurements
412(3)
19.2 Quantitative Force/Dissipation Measurement Using FM-AFM in Liquids
415(6)
19.2.1 Effect of Phase Shifting Elements in FM-AFM
415(3)
19.2.2 Photothermal Excitation of Cantilevers in Liquids
418(1)
19.2.3 Optimum Oscillation Amplitude for FM-AFM in Liquids
419(1)
19.2.4 2D and 3D Force Mapping Techniques
420(1)
19.3 Application of FM-AFM 1: 2D/3D Force Mapping
421(6)
19.3.1 3D Hydration Force Mapping on Muscovite Mica
421(4)
19.3.2 3D Electrostatic Force Mapping on Surfactant Aggregates
425(2)
19.4 Application of FM-AFM 2: High-Resolution Imaging of Biomolecules
427(5)
19.4.1 DNA
427(2)
19.4.2 Self-assembled Monoclonal Antibodies
429(3)
19.5 Summary and Outlook
432(3)
References
432(3)
20 Advanced Instrumentation of Frequency Modulation AFM for Subnanometer-Scale 2D/3D Measurements at Solid-Liquid Interfaces
435(26)
Takeshi Fukuma
20.1 Introduction
435(2)
20.2 Advanced Instrumentation
437(8)
20.2.1 3D Scanning Force Microscopy
438(1)
20.2.2 Improvements of Fundamental Performance
439(6)
20.3 Applications of Liquid-Environment FM-AFM
445(11)
20.3.1 2D Imaging
445(6)
20.3.2 3D Imaging
451(5)
20.4 Summary
456(5)
References
457(4)
21 Electrochemical Applications of Frequency Modulation Atomic Force Microscopy
461(20)
Yasuyuki Yokota
Ken-Ichi Fukui
21.1 Surface Electrochemistry
461(7)
21.1.1 Electrochemical Interfaces
461(2)
21.1.2 Surface Analysis
463(1)
21.1.3 Electrochemical Scanning Probe Microscopy
464(4)
21.2 EC-FM-AFM
468(6)
21.2.1 Instruments of EC-FM-AFM
468(1)
21.2.2 Soft Imaging of Adsorbates
469(2)
21.2.3 Solvation Structures by Force Curves
471(3)
21.3 Outlook
474(7)
References
477(4)
12 High-Speed Atomic Force Microscopy
481(38)
Takayuki Uchihashi
Noriyuki Kodera
Toshio Ando
22.1 Introduction
481(2)
22.2 Theoretical Considerations
483(2)
22.3 Cantilever and Tip
485(3)
22.4 OBD System for Small Cantilevers
488(3)
22.5 Fast Amplitude Detector
491(3)
22.6 Scanner
494(3)
22.6.1 Piezoelectric Actuator
494(1)
22.6.2 Scanner Design
495(2)
22.7 Control Techniques
497(10)
22.7.1 Active Damping of Z-scanner Vibrations
498(2)
22.7.2 Control Techniques to Damp XY-scanner Vibrations
500(2)
22.7.3 Compensation for Nonlinearity and Crosstalk
502(2)
22.7.4 Dynamic PID Controller
504(2)
22.7.5 Drift Compensator
506(1)
22.8 HS-AFM Imaging of Protein Molecules in Action
507(6)
22.8.1 Myosin V
507(3)
22.8.2 Intrinsically Disordered Proteins
510(3)
22.9 Future Prospects
513(6)
References
514(5)
Index 519