Muutke küpsiste eelistusi

E-raamat: Nondifferentiable Optimization and Polynomial Problems

  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Polynomial extremal problems (PEP) constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let :e = {:e 1, ... , :en} be the vector in n-dimensional real linear space Rn; n PO(:e), PI (:e), ... , Pm (:e) are polynomial functions in R with real coefficients. In general, a PEP can be formulated in the following form: (0.1) find r = inf Po(:e) subject to constraints (0.2) Pi (:e) =0, i=l, ... ,m (a constraint in the form of inequality can be written in the form of equality by introducing a new variable: for example, P( x) ~ 0 is equivalent to P(:e) + y2 = 0). Boolean and mixed polynomial problems can be written in usual form by adding for each boolean variable z the equality: Z2 - Z = O. Let a = {al, ... ,a } be integer vector with nonnegative entries {a;}f=l. n Denote by R[ a](:e) monomial in n variables of the form: n R[ a](:e) = IT :ef'; ;=1 d(a) = 2:7=1 ai is the total degree of monomial R[ a]. Each polynomial in n variables can be written as sum of monomials with nonzero coefficients: P(:e) = L caR[ a](:e), aEA{P) IX x Nondifferentiable optimization and polynomial problems where A(P) is the set of monomials contained in polynomial P.

Muu info

Springer Book Archives
Preface.
1. Elements of Convex Analysis, Linear Algebra, and Graph Theory.
2. Subgradient and epsilon-Subgradient Methods.
3. Subgradient-Type Methods with Space Dilation.
4. Elements of Information and Numerical Complexity of Polynomial Extremal Problems.
5. Decomposition Methods Based on Nonsmooth Optimization.
6. Algorithms for Constructing Optimal on Volume Ellipsoids and Semidefinite Programming.
7. The Role of Ellipsoid Method for Complexity Analysis of Combinatorial Problems.
8. Semidefinite Programming Bounds for Extremal Graph Problems.
9. Global Minimization of Polynomial Functions and 17-th Hilbert Problem. References.