|
|
ix | |
|
|
xv | |
Preface |
|
xvii | |
Acknowledgments |
|
xxi | |
|
|
|
|
3 | (51) |
|
|
3 | (1) |
|
|
3 | (17) |
|
|
4 | (2) |
|
1.2.2 Macroscopic Quantities from Molecular Behavior |
|
|
6 | (6) |
|
1.2.3 Molecular Collisions |
|
|
12 | (2) |
|
1.2.4 Molecular Transport Processes |
|
|
14 | (6) |
|
1.3 Kinetic Theory Analysis |
|
|
20 | (30) |
|
1.3.1 Velocity Distribution Function |
|
|
20 | (2) |
|
1.3.2 The Boltzmann Equation |
|
|
22 | (4) |
|
1.3.3 The H-Theorem of Boltzmann |
|
|
26 | (3) |
|
|
29 | (6) |
|
1.3.5 Equilibrium Collision Properties |
|
|
35 | (2) |
|
1.3.6 Free Molecular Flow onto a Surface |
|
|
37 | (7) |
|
1.3.7 Kinetic-Based Analysis of Nonequilibrium Flow |
|
|
44 | (4) |
|
1.3.8 Free Molecular Flow Analysis |
|
|
48 | (2) |
|
|
50 | (1) |
|
|
51 | (3) |
|
|
54 | (30) |
|
|
54 | (1) |
|
|
54 | (15) |
|
2.2.1 Heisenberg Uncertainty Principle |
|
|
56 | (1) |
|
2.2.2 The Schrodinger Equation |
|
|
57 | (3) |
|
2.2.3 Solutions of the Schrodinger Equation |
|
|
60 | (2) |
|
2.2.4 Two-Particle System |
|
|
62 | (3) |
|
2.2.5 Rotational and Vibrational Energy |
|
|
65 | (3) |
|
|
68 | (1) |
|
|
69 | (4) |
|
2.3.1 Electron Classification |
|
|
69 | (1) |
|
|
69 | (2) |
|
2.3.3 Spectroscopic Term Classification |
|
|
71 | (1) |
|
|
72 | (1) |
|
2.4 Structure of Diatomic Molecules |
|
|
73 | (8) |
|
2.4.1 Born-Oppenheimer Approximation |
|
|
74 | (3) |
|
2.4.2 Rotational and Vibrational Energy |
|
|
77 | (1) |
|
|
78 | (3) |
|
|
81 | (1) |
|
|
82 | (2) |
|
|
84 | (34) |
|
|
84 | (1) |
|
3.2 Molecular Statistical Methods |
|
|
84 | (6) |
|
|
87 | (3) |
|
3.3 Distribution of Energy States |
|
|
90 | (5) |
|
|
92 | (2) |
|
3.3.2 Boltzmann Energy Distribution |
|
|
94 | (1) |
|
3.4 Relation to Thermodynamics |
|
|
95 | (4) |
|
3.4.1 Boltzmann's Relation |
|
|
97 | (1) |
|
3.4.2 Macroscopic Thermodynamic Properties |
|
|
98 | (1) |
|
|
99 | (12) |
|
3.5.1 Translational Energy |
|
|
99 | (4) |
|
|
103 | (1) |
|
|
104 | (3) |
|
|
107 | (4) |
|
3.6 Dissociation--Recombination System |
|
|
111 | (3) |
|
|
114 | (1) |
|
|
114 | (4) |
|
|
118 | (31) |
|
|
118 | (1) |
|
4.2 Equilibrium Processes |
|
|
119 | (7) |
|
|
119 | (2) |
|
4.2.2 Equilibrium Chemistry |
|
|
121 | (3) |
|
4.2.3 Equilibrium Constant |
|
|
124 | (1) |
|
4.2.4 Equilibrium Composition |
|
|
124 | (2) |
|
4.3 Vibrational Relaxation |
|
|
126 | (3) |
|
4.3.1 Vibrational Relaxation Time |
|
|
127 | (2) |
|
4.4 Finite-Rate Chemistry |
|
|
129 | (15) |
|
|
133 | (3) |
|
4.4.2 Effects of Internal Energy |
|
|
136 | (2) |
|
4.4.3 Calculation of Dissociation Rates |
|
|
138 | (2) |
|
4.4.4 Finite-Rate Relaxation |
|
|
140 | (4) |
|
|
144 | (1) |
|
|
144 | (5) |
|
Part II Numerical Simulation |
|
|
|
5 Relations Between Molecular and Continuum Gas Dynamics |
|
|
149 | (34) |
|
|
149 | (1) |
|
5.2 The Conservation Equations |
|
|
150 | (5) |
|
5.3 Chapman--Enskog Analysis and Transport Properties |
|
|
155 | (18) |
|
5.3.1 Analysis for the BGK Equation |
|
|
156 | (6) |
|
5.3.2 Analysis for the Boltzmann equation |
|
|
162 | (3) |
|
5.3.3 Analysis for Gas Mixtures |
|
|
165 | (3) |
|
5.3.4 General Transport Properties of Polyatomic Mixtures |
|
|
168 | (5) |
|
5.4 Evaluation of Collision Cross Sections and Transport Properties |
|
|
173 | (8) |
|
5.4.1 Collision Cross Sections |
|
|
173 | (2) |
|
5.4.2 Hard-Sphere Interactions |
|
|
175 | (1) |
|
5.4.3 Inverse Power-Law Interaction's |
|
|
176 | (2) |
|
5.4.4 General Interatomic Potentials |
|
|
178 | (3) |
|
|
181 | (2) |
|
6 Direct Simulation Monte Carlo |
|
|
183 | (69) |
|
|
183 | (5) |
|
|
188 | (16) |
|
|
188 | (5) |
|
6.2.2 Particle Movement and Sorting |
|
|
193 | (4) |
|
|
197 | (5) |
|
6.2.4 Cell and Particle Properties |
|
|
202 | (2) |
|
6.3 Models for Viscosity, Diffusivity, and Thermal Conductivity |
|
|
204 | (22) |
|
6.3.1 The Variable Hard-Sphere Model |
|
|
204 | (12) |
|
6.3.2 The Variable Soft-Sphere Model |
|
|
216 | (2) |
|
6.3.3 Generalized Hard-Sphere, Soft-Sphere, and LJ Models |
|
|
218 | (6) |
|
6.3.4 Thermal Conductivity |
|
|
224 | (1) |
|
6.3.5 Model Parametrization |
|
|
225 | (1) |
|
6.4 Internal Energy Transfer Modeling in DSMC |
|
|
226 | (24) |
|
6.4.1 Continuum and Molecular Models |
|
|
226 | (2) |
|
6.4.2 Post-collision Energy Redistribution |
|
|
228 | (8) |
|
6.4.3 Inelastic Collision Pair Selection Procedures |
|
|
236 | (8) |
|
6.4.4 Generalized Post-collision Energy Redistribution |
|
|
244 | (6) |
|
|
250 | (2) |
|
7 Models for Nonequilibrium Thermochemistry |
|
|
252 | (59) |
|
|
252 | (1) |
|
7.2 Rotational Energy Exchange Models |
|
|
252 | (7) |
|
7.2.1 Constant Collision Number |
|
|
253 | (1) |
|
|
253 | (1) |
|
7.2.3 Variable Probability Exchange Model of Boyd |
|
|
254 | (1) |
|
7.2.4 Nonequilibrium Direction Dependent Model |
|
|
255 | (1) |
|
|
256 | (3) |
|
7.3 Vibrational Energy Exchange Models |
|
|
259 | (8) |
|
7.3.1 Constant Collision Number |
|
|
259 | (1) |
|
7.3.2 The Millikan-White Model |
|
|
260 | (3) |
|
7.3.3 Quantized Treatment for Vibration |
|
|
263 | (2) |
|
|
265 | (2) |
|
7.4 Dissociation Chemical Reactions |
|
|
267 | (10) |
|
7.4.1 Total Collision Energy Model |
|
|
267 | (6) |
|
7.4.2 Redistribution of Energy Following a Dissociation Reaction |
|
|
273 | (3) |
|
7.4.3 Vibrationally Favored Dissociation Model |
|
|
276 | (1) |
|
7.5 General Chemical Reactions |
|
|
277 | (32) |
|
7.5.1 Reaction Rates and Equilibrium Constant |
|
|
277 | (4) |
|
7.5.2 Backward Reaction Rates in DSMC |
|
|
281 | (6) |
|
7.5.3 Three-Body Recombination Reactions |
|
|
287 | (2) |
|
7.5.4 Post-Reaction Energy Redistribution and General Implementation |
|
|
289 | (4) |
|
7.5.5 DSMC Solutions for Reacting Flows |
|
|
293 | (16) |
|
|
309 | (2) |
Appendix A Generating Particle Properties |
|
311 | (12) |
Appendix B Collisional Quantities |
|
323 | (6) |
Appendix C Determining Post-Collision Velocities |
|
329 | (9) |
Appendix D Macroscopic Properties |
|
338 | (8) |
Appendix E Common Integrals |
|
346 | (3) |
References |
|
349 | (8) |
Index |
|
357 | |