Muutke küpsiste eelistusi

E-raamat: Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 107,41 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces $(X,\mathsf d,\mathfrak m)$.

On the geometric side, the authors' new approach takes into account suitable weighted action functionals which provide the natural modulus of $K$-convexity when one investigates the convexity properties of $N$-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors' new approach uses the nonlinear diffusion semigroup induced by the $N$-dimensional entropy, in place of the heat flow.

Under suitable assumptions (most notably the quadraticity of Cheeger's energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong $\mathrm {CD}^{*}(K,N)$ condition of Bacher-Sturm.
Introduction
Contraction and Convexity via Hamiltonian Estimates: An Heuristic Argument
Part I. Nonlinear Diffusion Equations and Their Linearization in Dirichlet
Spaces: Dirichlet Forms, Homogeneous Spaces and Nonlinear Diffusion
Backward and Forward Linearizations of Nonlinear Diffusion
Part II. Continuity Equation and Curvature Conditions in Metric Measure
Spaces: Preliminaries
Absolutely Continuous Curves in Wasserstein Spaces and Continuity
Inequalities in a Metric Setting
Weighted Energy Functionals along Absolutely Continuous Curves
Dynamic Kantorovich Potentials, Continuity Equation and Dual Weighted Cheeger
Energies
The $\mathrm{RCDS}^{*}(K, N)$ Condition and Its Characterizations through
Weighted Convexity and Evolution Variational Inequalities
Part III. Bakry-Emery Condition and Nonlinear Diffusion: The Bakry-Emery
Condition
Nonlinear Diffusion Equations and Action Estimates
The Equivalence Between $\mathrm{BE}(K, N)$ and $\mathrm{RCDS}^{*}(K, N)$
Bibliography.
Luigi Ambrosio, Scuola Normale Superiore, Pisa, Italy.

Andrea Mondino, University of Warwick, Coventry, United Kingdom.

Giuseppe Savare, Universita di Pavia, Italy.