Muutke küpsiste eelistusi

E-raamat: Nonlinear Dispersive Equations

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,06 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a self-contained presentation of classical and new methods for studying wave phenomena that are related to the existence and stability of solitary and periodic travelling wave solutions for nonlinear dispersive evolution equations. Simplicity, concrete examples, and applications are emphasized throughout in order to make the material easily accessible. The list of classical nonlinear dispersive equations studied include Korteweg-de Vries, Benjamin-Ono, and Schrodinger equations. Many special Jacobian elliptic functions play a role in these examples. The author brings the reader to the forefront of knowledge about some aspects of the theory and motivates future developments in this fascinating and rapidly growing field. The book can be used as an instructive study guide as well as a reference by students and mature scientists interested in nonlinear wave phenomena.
Preface xi
Part
1. History, Basic Models, and Travelling Waves
1(46)
Introduction and a Brief Review of the History
3(14)
Basic Models
17(8)
Introduction
17(1)
Models
17(5)
Comments
22(3)
Solitary and Periodic Travelling Wave Solutions
25(22)
Introduction
25(1)
Travelling Wave Solutions
25(2)
Examples
27(12)
The Poisson Summation Theorem and Periodic Wave Solutions
39(3)
Comments
42(5)
Part
2. Well-Posedness and Stability Definition
47(20)
Initial Value Problem
49(12)
Introduction
49(1)
Some Results about Well-Posedness
49(8)
Some Results about Global Well-Posedness
57(1)
Comments
58(3)
Definition of Stability
61(6)
Introduction
61(1)
Orbital Stability
61(3)
Comments
64(3)
Part
3. Stability Theory
67(36)
Orbital Stability---the Classical Method
69(22)
Introduction
69(1)
Stability of Solitary Wave Solutions for the GKdV
70(11)
``Stability of the Blow-up'' for a Class of KdV Equations
81(6)
Comments
87(4)
Grillakis-Shatah-Strauss's Stability Approach
91(12)
Introduction
91(1)
Geometric Overview of the Theory
91(2)
Stability of Solitary Wave Solutions
93(5)
Stability of Solitary Waves for KdV-Type Equations
98(1)
On Albert-Bona's Spectrum Approach
99(1)
Comments
100(3)
Part
4. The Concentration-Compactness Principle in Stability Theory
103(56)
Existence and Stability of Solitary Waves for the GBO
105(22)
Introduction
105(2)
Solitary Waves for the GBO
107(12)
Stability of Solitary Waves for the GBO Equations
119(5)
Comments
124(3)
More about the Concentration-Compactness Principle
127(10)
Introduction
127(1)
Solitary Wave Solutions of Benjamin-Type Equations
127(1)
Stability of Solitary Wave Solutions: the GKdV Equations
128(1)
Stability of Solitary Wave Solutions: the Benjamin Equation
129(4)
Stability of Solitary Wave Solutions: the Fourth-Order Equation
133(1)
Stability of Solitary Wave Solutions: the GKP-I Equations
133(2)
Comments
135(2)
Instability of Solitary Wave Solutions
137(22)
Introduction
137(2)
Instability of Solitary Wave Solutions: the GB Equations
139(11)
Fifth-Order Korteweg-de Vries Equations
150(2)
A Generalized Class of Benjamin Equations
152(1)
Linear Instability and Nonlinear Instability
153(4)
Comments
157(2)
Part
5. Stability of Periodic Travelling Waves
159(40)
Stability of Cnoidal Waves
161(38)
Introduction
161(3)
Stability of Cnoidal Waves with Mean Zero for KdV Equation
164(10)
Stability of Constant Solutions for the KdV Equation
174(3)
Cnoidal Waves for the 1D Benney-Luke Equation
177(6)
Angulo and Natali's Stability Approach
183(13)
Comments
196(3)
Part
6. Appendices
199(46)
Appendix A. Sobolev Spaces and Elliptic Functions
201(10)
Introduction
201(1)
Lebesgue Space Lp(Ω)
201(1)
The Fourier Transform in L1 (Rn)
201(1)
The Fourier Transform in L2 (Rn)
202(1)
Tempered Distributions
202(2)
Sobolev Spaces
204(2)
Sobolev Spaces of Periodic Type
206(1)
The Symmetric Decreassing Rearrangement
207(1)
The Jacobian Elliptic Functions
208(3)
Appendix B. Operator Theory
211(34)
Introduction
211(1)
Closed Linear Operators: Basic Theory
211(18)
Pseudo-Differential Operators and Their Spectrum
229(2)
Spectrum of Linear Operators Associated to Solitary Waves
231(6)
Sturm-Liouville Theory
237(3)
Floquet Theory
240(5)
Bibliography 245(10)
Index 255