Muutke küpsiste eelistusi

E-raamat: Nonlinear Dispersive Waves and Fluids

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: 275 pages
  • Sari: Contemporary Mathematics
  • Ilmumisaeg: 03-Dec-2019
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470451967
  • Formaat - PDF+DRM
  • Hind: 155,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 275 pages
  • Sari: Contemporary Mathematics
  • Ilmumisaeg: 03-Dec-2019
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470451967

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume contains the proceedings of the AMS Special Session on Spectral Calculus and Quasilinear Partial Differential Equations and the AMS Special Session on PDE Analysis on Fluid Flows, which were held in January 2017 in Atlanta, Georgia. These two sessions shared the underlying theme of the analysis aspect of evolutionary PDEs and mathematical physics.

The articles address the latest trends and perspectives in the area of nonlinear dispersive equations and fluid flows. The topics mainly focus on using state-of-the-art methods and techniques to investigate problems of depth and richness arising in quantum mechanics, general relativity, and fluid dynamics.
N. Basharat, Y. Hu, and S. Zheng, Blowup rate for mass critical
rotational nonlinear Schrodinger equations
D. Cao, T. Mengesha, and T. Phan, Gradient estimates for weak solutions of
linear elliptic systems with singular-degenerate coefficients
R. Denlinger, Virial estimates for hard spheres
Y. Du, G. Chen, and J. Liu, The almost global existence to classical solution
for a 3-D wave equation of nematic liquid-crystals
L. G. Farah, J. Holmer, and S. Roudenko, Instability of solitons-revisited,
I: The critical generalized KdV equation
L. G. Farah, J. Holmer, and S. Roudenko, Instability of solitons-revisited,
II: The supercritical Zakharov-Kuznetsov equation
C. Flores, S. Oh, and D. Smith, Stabilization of dispersion-generalized
Benjamin-Ono
D. Garrisi and V. Georgiev, Uniqueness of standing-waves for a non-linear
Schrodinger equation with three pure-power combinations in dimension one
S. Gustafson and D. Roxanas, Below-threshold solutions of a focusing
energy-critical heat equation in $\mathbb{R}^4$
D. Li and X. Zhang, A regularity upgrade of pressure
S. Miao, On large future-global-in-time solutions to energy-supercritical
nonlinear wave equation
J. Murphy, The nonlinear Schrodinger equation with an inverse-square
potential
Y. Shao and C. Wang, The harmonic map heat flow on conic manifolds
K. Yamazaki, On the global regularity issue of the two-dimensional
magnetohydrodynamics system with magnetic diffusion weaker than a Laplacian
J. Zhang, S. Zheng, and S. Zhu, Orbital stability of standing waves for
fractional Hartree equation with unbounded potentials.
Shijun Zheng, Georgia Southern University, Statesboro, GA.

Marius Beceanu, University at Albany, NY.

Jerry Bona, University of Illinois at Chicago, IL.

Geng Chen, University of Kansas, Lawrence, KS.

Tuoc Van Phan, University of Tennessee, Knoxville, TN.

Avy Soffer, Rutgers University, Piscataway, NJ.