Muutke küpsiste eelistusi

E-raamat: Nonlinear Dynamics and Complexity: Mathematical Modelling of Real-World Problems

  • Formaat - EPUB+DRM
  • Hind: 246,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book collects a range of contributions on nonlinear dynamics and complexity, providing a systematic summary of recent developments, applications, and overall advances in nonlinearity, chaos, and complexity. It presents both theories and techniques in nonlinear systems and complexity and serves as a basis for more research on synchronization and complexity in nonlinear science as well as a mechanism to fast-scatter the new knowledge to scientists, engineers, and students in the corresponding fields. Written by world-renown experts from across the globe, the collection is ideal for researchers, practicing engineers, and students concerned with machinery and controls, manufacturing, and controls.
Analysis of the temporal evolution of Plumeria bud by measuring its
complex impedance: Detection of the fractal element with complex conjugated
power-law exponents.- On the stochastic extension of the classical
epidemiological compartmental model.- Repellers for the Laguerre Iteration
Function.- Mathematical modeling of HBV infection with DNA-containing capsids
and therapy.- New fractional derivative for fuzzy functions and its
applications on time scale.- A novel high-efficiency piezoelectric energy
harvester designed to harvest energy from random excitation.- Random
vibration of one-dimensional acoustic black hole beam.- Statistics of
topological defects in one-dimensional structures based on the Kibble Zurek
Mechanism.- Dynamical analysis of a Prabhakar fractional chaotic autonomous
system.- Exact solutions of two PDEs which govern the 3D Inverse Problem of
Dynamics.- Target Tracking Algorithm based on YOLOv3 And Feature Point
Matching.- Composition of Fuzzy Numbers with Chaotic Maps.- Invariant
Manifolds in the Second Order Maxwell Bloch Equations.- Geometric
parametrisation of Lagrangian Descriptors for 1 degree-of-freedom systems.-
Computing chaotic eigenvectors in narrow 1 energy windows.- Analytical and
experimental study of a Hindmarsh-Rose neuron system.- Pricing Options Under
Time-Fractional Model using Adomian Decomposition.- Dynamical Analysis of a
Three-Dimensional Non-Autonomous Chaotic Circuit Based on a Physical
Memristor.- Compartmental Poisson stability in non-autonomous differential
equations.- A computational probabilistic calibration of the Pielous model
to study the growth of breast tumours. A comparative study.- About the
simulations of Maxwell equations. Some applications.- A Pandemic Three-Sided
Coin.- Global stability analysis of two-strain SEIR epidemic model with
quarantine strategy.
Dr. Carla M.A. Pinto is a Coordinating Professor at the School of Engineering, Polytechnic of Porto, Portugal. Her main research topic is epidemiology, in particular Mathematical Epidemiology. She is interested in mathematical challenges and their role in providing advice on public health policies. Mrs Pinto is trained in Nonlinear Dynamics, Bifurcation Theory. Previous research included the analysis of Central Pattern Generators for Animal and Robot Locomotion, coupled cell networks, neuron-like equations (Hodgkin-Huxley equations, Fitz-Hugh Nagumo, Morris-Lecar).