|
|
xiii | |
|
|
xv | |
Preface |
|
xvii | |
Acknowledgments |
|
xix | |
Acronyms |
|
xxi | |
|
|
1 | (6) |
|
1.1 State of a Dynamic System |
|
|
1 | (1) |
|
|
1 | (1) |
|
1.3 Construals of Computing |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
4 | (3) |
|
|
7 | (22) |
|
|
7 | (1) |
|
|
7 | (2) |
|
2.3 The Concept of Observability |
|
|
9 | (1) |
|
2.4 Observability of Linear Time-Invariant Systems |
|
|
10 | (4) |
|
2.4.1 Continuous-Time LTI Systems |
|
|
10 | (2) |
|
2.4.2 Discrete-Time LTI Systems |
|
|
12 | (2) |
|
2.4.3 Discretization of LTI Systems |
|
|
14 | (1) |
|
2.5 Observability of Linear Time-Varying Systems |
|
|
14 | (3) |
|
2.5.1 Continuous-Time LTV Systems |
|
|
14 | (2) |
|
2.5.2 Discrete-Time LTV Systems |
|
|
16 | (1) |
|
2.5.3 Discretization of LTV Systems |
|
|
17 | (1) |
|
2.6 Observability of Nonlinear Systems |
|
|
17 | (6) |
|
2.6.1 Continuous-Time Nonlinear Systems |
|
|
18 | (3) |
|
2.6.2 Discrete-Time Nonlinear Systems |
|
|
21 | (1) |
|
2.6.3 Discretization of Nonlinear Systems |
|
|
22 | (1) |
|
2.7 Observability of Stochastic Systems |
|
|
23 | (2) |
|
2.8 Degree of Observability |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
27 | (2) |
|
|
29 | (12) |
|
|
29 | (1) |
|
|
30 | (1) |
|
3.3 Extended Luenberger-Type Observer |
|
|
31 | (2) |
|
3.4 Sliding-Mode Observer |
|
|
33 | (2) |
|
3.5 Unknown-Input Observer |
|
|
35 | (4) |
|
|
39 | (2) |
|
4 Bayesian Paradigm and Optimal Nonlinear Filtering |
|
|
41 | (8) |
|
|
41 | (1) |
|
|
42 | (1) |
|
4.3 Optimal Nonlinear Filtering |
|
|
42 | (3) |
|
|
45 | (1) |
|
4.5 Posterior Cramer--Rao Lower Bound |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
49 | (22) |
|
|
49 | (1) |
|
|
50 | (3) |
|
|
53 | (1) |
|
|
54 | (1) |
|
5.5 Extended Kalman Filter |
|
|
54 | (1) |
|
5.6 Extended Information Filter |
|
|
54 | (1) |
|
5.7 Divided-Difference Filter |
|
|
54 | (6) |
|
5.8 Unscented Kalman Filter |
|
|
60 | (1) |
|
5.9 Cubature Kalman Filter |
|
|
60 | (4) |
|
5.10 Generalized PID Filter |
|
|
64 | (1) |
|
|
65 | (2) |
|
|
67 | (3) |
|
5.12.1 Information Fusion |
|
|
67 | (1) |
|
|
67 | (1) |
|
5.12.3 Urban Traffic Network |
|
|
67 | (1) |
|
5.12.4 Cybersecurity of Power Systems |
|
|
67 | (1) |
|
5.12.5 Incidence of Influenza |
|
|
68 | (1) |
|
|
68 | (2) |
|
|
70 | (1) |
|
|
71 | (14) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
6.4 Sequential Importance Sampling |
|
|
73 | (2) |
|
|
75 | (1) |
|
6.6 Sample Impoverishment |
|
|
76 | (1) |
|
6.7 Choosing the Proposal Distribution |
|
|
77 | (1) |
|
6.8 Generic Particle Filter |
|
|
78 | (3) |
|
|
81 | (1) |
|
6.9.1 Simultaneous Localization and Mapping |
|
|
81 | (1) |
|
|
82 | (3) |
|
7 Smooth Variable-Structure Filter |
|
|
85 | (28) |
|
|
85 | (1) |
|
|
86 | (4) |
|
|
90 | (3) |
|
|
93 | (3) |
|
7.5 Filter Corrective Term for Linear Systems |
|
|
96 | (6) |
|
7.6 Filter Corrective Term for Nonlinear Systems |
|
|
102 | (3) |
|
|
105 | (2) |
|
7.8 The Secondary Performance Indicator |
|
|
107 | (1) |
|
7.9 Second-Order Smooth Variable Structure Filter |
|
|
108 | (1) |
|
7.10 Optimal Smoothing Boundary Design |
|
|
108 | (2) |
|
7.11 Combination of SVSF with Other Filters |
|
|
110 | (1) |
|
|
110 | (1) |
|
7.12.1 Multiple Target Tracking |
|
|
111 | (1) |
|
7.12.2 Battery State-of-Charge Estimation |
|
|
111 | (1) |
|
|
111 | (1) |
|
|
111 | (2) |
|
|
113 | (28) |
|
|
113 | (1) |
|
|
114 | (1) |
|
8.3 Stochastic Gradient Descent |
|
|
115 | (4) |
|
8.4 Natural Gradient Descent |
|
|
119 | (1) |
|
|
120 | (2) |
|
|
122 | (1) |
|
8.7 Backpropagation Through Time |
|
|
122 | (1) |
|
|
122 | (3) |
|
|
125 | (1) |
|
8.10 Convolutional Neural Network |
|
|
125 | (2) |
|
8.11 Long Short-Term Memory |
|
|
127 | (2) |
|
|
129 | (2) |
|
|
131 | (1) |
|
|
131 | (4) |
|
|
135 | (1) |
|
8.16 Generative Adversarial Network |
|
|
136 | (1) |
|
|
137 | (2) |
|
|
139 | (2) |
|
9 Deep Learning-Based Filters |
|
|
141 | (44) |
|
|
141 | (1) |
|
9.2 Variational Inference |
|
|
142 | (2) |
|
9.3 Amortized Variational Inference |
|
|
144 | (1) |
|
|
144 | (2) |
|
9.5 Backpropagation Kalman Filter |
|
|
146 | (2) |
|
9.6 Differentiable Particle Filter |
|
|
148 | (4) |
|
9.7 Deep Rao--Blackwellized Particle Filter |
|
|
152 | (6) |
|
9.8 Deep Variational Bayes Filter |
|
|
158 | (9) |
|
9.9 Kalman Variational Autoencoder |
|
|
167 | (5) |
|
9.10 Deep Variational Information Bottleneck |
|
|
172 | (4) |
|
9.11 Wasserstein Distributionally Robust Kalman Filter |
|
|
176 | (2) |
|
9.12 Hierarchical Invertible Neural Transport |
|
|
178 | (4) |
|
|
182 | (1) |
|
9.13.1 Prediction of Drug Effect |
|
|
182 | (1) |
|
9.13.2 Autonomous Driving |
|
|
183 | (1) |
|
|
183 | (2) |
|
10 Expectation Maximization |
|
|
185 | (18) |
|
|
185 | (1) |
|
10.2 Expectation Maximization Algorithm |
|
|
185 | (3) |
|
10.3 Particle Expectation Maximization |
|
|
188 | (2) |
|
10.4 Expectation Maximization for Gaussian Mixture Models |
|
|
190 | (1) |
|
10.5 Neural Expectation Maximization |
|
|
191 | (3) |
|
10.6 Relational Neural Expectation Maximization |
|
|
194 | (2) |
|
10.7 Variational Filtering Expectation Maximization |
|
|
196 | (2) |
|
10.8 Amortized Variational Filtering Expectation Maximization |
|
|
198 | (1) |
|
|
199 | (2) |
|
10.9.1 Stochastic Volatility |
|
|
199 | (1) |
|
10.9.2 Physical Reasoning |
|
|
200 | (1) |
|
10.9.3 Speech, Music, and Video Modeling |
|
|
200 | (1) |
|
|
201 | (2) |
|
11 Reinforcement Learning-Based Filter |
|
|
203 | (10) |
|
|
203 | (1) |
|
11.2 Reinforcement Learning |
|
|
204 | (3) |
|
11.3 Variational Inference as Reinforcement Learning |
|
|
207 | (3) |
|
|
210 | (1) |
|
11.4.1 Battery State-of-Charge Estimation |
|
|
210 | (1) |
|
|
210 | (3) |
|
12 Nonparametric Bayesian Models |
|
|
213 | (22) |
|
|
213 | (1) |
|
12.2 Parametric vs Nonparametric Models |
|
|
213 | (1) |
|
12.3 Measure-Theoretic Probability |
|
|
214 | (5) |
|
|
219 | (2) |
|
12.5 Kolmogorov Extension Theorem |
|
|
221 | (2) |
|
12.6 Extension of Bayesian Models |
|
|
223 | (1) |
|
|
224 | (2) |
|
12.8 Construction of Nonparametric Bayesian Models |
|
|
226 | (1) |
|
12.9 Posterior Computability |
|
|
227 | (1) |
|
12.10 Algorithmic Sufficiency |
|
|
228 | (4) |
|
|
232 | (1) |
|
12.11.1 Multiple Object Tracking |
|
|
233 | (1) |
|
12.11.2 Data-Driven Probabilistic Optimal Power Flow |
|
|
233 | (1) |
|
12.11.3 Analyzing Single-Molecule Tracks |
|
|
233 | (1) |
|
|
233 | (2) |
References |
|
235 | (18) |
Index |
|
253 | |