Muutke küpsiste eelistusi

E-raamat: Nonlinear Laser Dynamics: From Quantum Dots to Cryptography

Edited by (Technical University Berlin, Germany), Series edited by (University of Kiel, Germany)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 146,90 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers.

The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research.

By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.

Arvustused

Preface xv
List of Contributors
xvii
Part I Nanostructured Devices
1(136)
1 Modeling Quantum-Dot-Based Devices
3(32)
Kathy Ludge
1.1 Introduction
3(1)
1.2 Microscopic Coulomb Scattering Rates
4(5)
1.2.1 Carrier-Carrier Scattering
5(3)
1.2.2 Detailed Balance
8(1)
1.3 Laser Model with Ground and Excited States in the QDs
9(9)
1.3.1 Temperature Effects
14(1)
1.3.2 Impact of Energy Confinement
15(2)
1.3.3 Eliminating the Excited State Population Dynamics
17(1)
1.4 Quantum Dot Switching Dynamics and Modulation Response
18(3)
1.4.1 Inhomogeneous Broadening
19(1)
1.4.2 Temperature-Dependent Losses in the Reservoir
20(1)
1.4.3 Comparison to Experimental Results
20(1)
1.5 Asymptotic Analysis
21(5)
1.5.1 Consequences of Optimizing Device Performance
25(1)
1.6 QD Laser with Doped Carrier Reservoir
26(2)
1.7 Model Reduction
28(1)
1.8 Comparison to Quantum Well Lasers
29(1)
1.9 Summary
30(5)
Acknowledgment
30(1)
References
30(5)
2 Exploiting Noise and Polarization Bistability in Vertical-Cavity Surface-Emitting Lasers for Fast Pulse Generation and Logic Operations
35(22)
Jordi Zamora-Munt
Cristina Masoller
2.1 Introduction
35(4)
2.2 Spin-Flip Model
39(1)
2.3 Polarization Switching
40(4)
2.4 Pulse Generation Via Asymmetric Triangular Current Modulation
44(4)
2.5 Influence of the Noise Strength
48(1)
2.6 Logic Stochastic Resonance in Polarization-Bistable VCSELs
49(3)
2.7 Reliability of the VCSEL-Based Stochastic Logic Gate
52(1)
2.8 Conclusions
53(4)
Acknowledgment
54(1)
References
54(3)
3 Mode Competition Driving Laser Nonlinear Dynamics
57(34)
Marc Sciamanna
3.1 Introduction
57(1)
3.2 Mode Competition in Semiconductor Lasers
58(3)
3.3 Low-Frequency Fluctuations in Multimode Lasers
61(3)
3.4 External-Cavity Mode Beating and Bifurcation Bridges
64(1)
3.5 Multimode Dynamics in Lasers with Short External Cavity
65(2)
3.6 Polarization Mode Hopping in VCSEL with Time Delay
67(6)
3.6.1 Polarization Switching Induced by Optical Feedback
67(2)
3.6.2 Polarization Mode Hopping with Time-Delay Dynamics
69(2)
3.6.3 Coherence Resonance in a Bistable System with Time Delay
71(2)
3.7 Polarization Injection Locking Properties of VCSELs
73(10)
3.7.1 Optical Injection Dynamics
74(2)
3.7.2 Polarization and Transverse Mode Switching and Locking: Experiment
76(5)
3.7.3 Bifurcation Picture of a Two-Mode Laser
81(2)
3.8 Dynamics of a Two-Mode Quantum Dot Laser with Optical Injection
83(2)
3.9 Conclusions
85(6)
Acknowledgments
86(1)
References
86(5)
4 Quantum Cascade Laser: An Emerging Technology
91(20)
Andreas Wacker
4.1 The Essence of QCLs
92(4)
4.1.1 Semiconductor Heterostructures
92(2)
4.1.2 Electric Pumping
94(1)
4.1.3 Cascading
94(2)
4.2 Different Designs
96(2)
4.2.1 Optical Transition and Lifetime of the Upper State
96(1)
4.2.2 Effective Extraction from the Lower Laser Level
96(1)
4.2.3 Injection
97(1)
4.3 Reducing the Number of Levels Involved
98(2)
4.4 Modeling
100(3)
4.5 Outlook
103(1)
Acknowledgments
104(1)
4.6 Appendix: Derivation of Eq. (4.1)
104(7)
References
105(6)
5 Controlling Charge Domain Dynamics in Superlattices
111(26)
Mark T. Greenaway
Alexander G. Balanov
T. Mark Fromhold
5.1 Model of Charge Domain Dynamics
112(5)
5.2 Results
117(15)
5.2.1 Drift Velocity Characteristics for θ = 0°, 25°, and 40°
118(1)
5.2.2 Current-Voltage Characteristics for θ = 0°, 25°, and 40°
119(1)
5.2.3 I(t) Curves for θ = 0°, 25°, and 40°
120(2)
5.2.4 Charge Dynamics for θ = 0°, 25°, and 40°
122(6)
5.2.5 Stability and Power of I(t) Oscillations for 0°<9<90°
128(2)
5.2.6 Frequency of I(t) for 0°<θ<90°
130(2)
5.3 Conclusion
132(5)
Acknowledgment
132(1)
References
132(5)
Part II Coupled Laser Device
137(132)
6 Quantum Dot Laser Tolerance to Optical Feedback
139(22)
Christian Otto
Kathy Ludge
Evgeniy Viktorov
Thomas Erneux
6.1 Introduction
139(2)
6.2 QD Laser Model with One Carrier Type
141(1)
6.3 Electron-Hole Model for QD Laser
142(3)
6.3.1 Similar Scattering Times τe and τh
143(1)
6.3.2 Different Scattering Times τe and τh
144(1)
6.3.3 Small Scattering Lifetime of the Holes a = O(1)
144(1)
6.3.4 Very Small Scattering Lifetime of the Holes a = O(γ-1/2)
144(1)
6.4 Summary
145(1)
Acknowledgment
146(1)
6.5 Appendix A: Rate Equations for Quantum Well Lasers
146(2)
6.6 Appendix B: Asymptotic Analysis for a QD Laser Model with One Carrier Type
148(5)
6.7 Appendix C: Asymptotic Analysis for a QD Laser Model with Two Carrier Types
153(8)
References
158(3)
7 Bifurcation Study of a Semiconductor Laser with Saturable Absorber and Delayed Optical Feedback
161(22)
Bernd Krauskopf
Jamie J. Walker
7.1 Introduction
161(3)
7.2 Bifurcation Analysis of the SLSA
164(4)
7.3 Equilibria of the DDE and Their Stability
168(3)
7.4 Bifurcation Study for Excitable SLSA
171(2)
7.5 Bifurcation Study for Nonexcitable SLSA
173(3)
7.6 Dependence of the Bifurcation Diagram on the Gain Pump Parameter
176(2)
7.7 Conclusions
178(5)
References
179(4)
8 Modeling of Passively Mode-Locked Semiconductor Lasers
183(34)
Andrei G. Vladimirov
Dmitrii Rachinskii
Matthias Wolfrum
8.1 Introduction
183(1)
8.2 Derivation of the Model Equations
184(5)
8.3 Numerical Results
189(8)
8.4 Stability Analysis for the ML Regime in the Limit of Infinite Bandwidth
197(6)
8.4.1 New's Stability Criterion
197(2)
8.4.2 Slow Stage
199(1)
8.4.3 Fast Stage
199(1)
8.4.4 Laser Without Spectral Filtering
200(3)
8.5 The Q-Switching Instability of the ML Regime
203(9)
8.5.1 Laser Without Spectral Filtering
204(3)
8.5.2 Weak Saturation Limit
207(2)
8.5.3 Variational Approach
209(3)
8.6 Conclusion
212(5)
Acknowledgments
213(1)
References
213(4)
9 Dynamical and Synchronization Properties of Delay-Coupled Lasers
217(28)
Cristina M. Gonzalez
Miguel C. Soriano
M. Carme Torrent
Jordi Garcia-Ojalvo
Ingo Fischer
9.1 Motivation: Why Coupling Lasers?
217(1)
9.2 Dynamics of Two Mutually Delay-Coupled Lasers
218(6)
9.2.1 Dynamical Instability
218(2)
9.2.2 Instability of Isochronous Solution
220(4)
9.3 Properties of Leader-Laggard Synchronization
224(4)
9.3.1 Emergence of Leader-Laggard Synchronization
224(2)
9.3.2 Control of Lag Synchronization
226(2)
9.4 Dynamical Relaying as Stabilization Mechanism for Zero-Lag Synchronization
228(3)
9.4.1 Laser Relay
228(2)
9.4.2 Mirror Relay
230(1)
9.5 Modulation Characteristics of Delay-Coupled Lasers
231(9)
9.5.1 Periodic Modulation
231(4)
9.5.2 Noise Modulation
235(3)
9.5.3 Application: Key Exchange Protocol
238(2)
9.6 Conclusion
240(5)
Acknowledgments
240(1)
References
241(4)
10 Complex Networks Based on Coupled Two-Mode Lasers
245(24)
Andreas Amann
10.1 Introduction
245(1)
10.2 Complex Networks on the Basis of Two-Mode Lasers
246(2)
10.3 The Design Principles of Two-Mode Lasers
248(5)
10.4 The Dynamics of Two-Mode Lasers Under Optical Injection
253(11)
10.4.1 The Model Equations
253(1)
10.4.2 The ε = 0 Case
254(3)
10.4.3 The Finite ε Case
257(7)
10.5 Conclusions
264(5)
Acknowledgments
265(1)
References
265(4)
Part III Synchronization and Cryptography
269(112)
11 Noise Synchronization and Stochastic Bifurcations in Lasers
271(22)
Sebastian M. Wieczorek
11.1 Introduction
271(1)
11.2 Class-B Laser Model and Landau-Stuart Model
272(2)
11.3 The Linewidth Enhancement Factor and Shear
274(1)
11.4 Detection of Noise Synchronization
275(3)
11.5 Definition of Noise Synchronization
278(2)
11.6 Synchronization Transitions via Stochastic d-Bifurcation
280(5)
11.6.1 Class-B Laser Model Versus Landau-Stuart Equations
282(3)
11.7 Noise-Induced Strange Attractors
285(4)
11.8 Conclusions
289(4)
References
290(3)
12 Emergence of One- and Two-Cluster States in Populations of Globally Pulse-Coupled Oscillators
293(24)
Leonhard Lucken
Serhiy Yanchuk
12.1 Introduction
293(7)
12.1.1 Pulse-Coupled Oscillators
294(1)
12.1.2 Phase-Response Curve as a Parameter
295(3)
12.1.3 System Description
298(2)
12.2 Numerical Results
300(2)
12.3 Appearance and Stability Properties of One-Cluster State
302(4)
12.3.1 Inadequacy of the Linear Stability Analysis
302(1)
12.3.2 One-Cluster State is a Saddle Point
302(1)
12.3.2.1 Existence of a Local Unstable Direction
302(1)
12.3.2.2 Existence of a Local Stable Direction
303(1)
12.3.2.3 Other Stable and Unstable Local Directions
304(1)
12.3.3 Stable Homoclinic Orbit to One-Cluster State
305(1)
12.4 Two-Cluster States
306(3)
12.4.1 Stability of Two-Cluster States
308(1)
12.5 Intermediate State for Symmetric PRC with β = 0.5
309(1)
12.6 Conclusions
310(1)
12.7 Appendix: Existence of a Homoclinic Orbit
310(7)
References
315(2)
13 Broadband Chaos
317(16)
Kristine E. Callan
Lucas Illing
Daniel J. Gauthier
13.1 Introduction
317(1)
13.2 Optoelectronic Oscillators
318(5)
13.3 Instability Threshold
323(2)
13.4 Transition to Broadband Chaos
325(2)
13.5 Asymptotic Analysis
327(3)
13.6 Summary and Outlook
330(3)
Acknowledgments
331(1)
References
331(2)
14 Synchronization of Chaotic Networks and Secure Communication
333(22)
Ido Kanter
Wolfgang Kinzel
14.1 Introduction
333(1)
14.2 Unidirectional Coupling
334(1)
14.3 Transmission of Information
335(1)
14.4 Bidirectional Coupling
336(3)
14.5 Mutual Chaos Pass Filter
339(6)
14.5.1 Protocol
342(3)
14.6 Private Filters
345(1)
14.7 Networks
346(4)
14.8 Outlook
350(5)
References
350(5)
15 Desultory Dynamics in Diode-Lasers: Drift, Diffusion, and Delay
355(26)
K. Alan Shore
15.1 Introduction
355(2)
15.2 Carrier Diffusion in Diode Lasers
357(2)
15.3 Intersubband Laser Dynamics
359(3)
15.4 Carrier Diffusion Effects in VCSELs
362(2)
15.4.1 Transverse Mode Competition and Secondary Pulsations
362(1)
15.4.2 VCSEL Polarization Selection
363(1)
15.4.3 Nanospin VCSELs
363(1)
15.5 Delayed Feedback and Control of VCSEL Polarization
364(1)
15.6 VCSEL Chaos and Synchronization and Message Transmission
365(4)
15.7 Delay Deletion: Nullified Time of Flight
369(2)
15.8 Chaos Communications: Optimization and Robustness
371(1)
15.9 Conclusion
372(9)
Acknowledgments
373(1)
References
373(7)
Further Reading
380(1)
Index 381
Kathy Luedge holds a position as senior scientist at the Institute of Theoretical Physics at the Technical University, Berlin. Her research interests are modeling of semiconductor quantum dot lasers, nonlinear laser dynamics, and control with optical feedback. For many years, she has been collaborating with both experimental and theoretical scientists from renowned international institutes.