Muutke küpsiste eelistusi

E-raamat: Nonlinear Optics: Phenomena, Materials and Devices

(University of Central Florida, CREOL),
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 116,03 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Clear, integrated coverage of all aspects of nonlinear opticsphenomena, materials, and devices

Coauthored by George Stegeman, one of the most highly respected pioneers of nonlinear opticswith contributions on applications from Robert Stegemanthis book covers nonlinear optics from a combined physics, optics, materials science, and devices perspective. It offers a thoroughly balanced treatment of concepts, nonlinear materials, practical aspects of nonlinear devices, and current application areas.

Beginning with the presentation of a simple electron on a spring modelto help readers make the leap from concepts to applicationsNonlinear Optics gives comprehensive explanations of second-order phenomena, derivation of nonlinear susceptibilities, third-order nonlinear effects, multi-wave mixing, scattering, and more. Coverage includes:





Nonlinear response of materials at the molecular level Second-order nonlinear devices, their optimization and limitations The physical origins of second- and third-order nonlinearities Typical frequency dispersion of nonlinearities, explained in terms of simple two- and three-level models Ultrafast and ultrahigh intensity processes Practice problems demonstrating the design of such nonlinear devices as frequency doublers and optical oscillators

Based on more than twenty years of lectures at the College of Optics and Photonics (CREOL) at the University of Central Florida, Nonlinear Optics introduces all topics from the ground up, making the material easily accessible not only for physicists, but also for chemists and materials scientists, as well as professionals in diverse areas of optics, from laser physics to electrical engineering.
Preface xi
1 Introduction
1(14)
1.1 What is Nonlinear Optics and What is it Good for?
1(1)
1.2 Notation
2(2)
1.3 Classical Nonlinear Optics Expansion
4(2)
1.4 Simple Model: Electron on a Spring and its Application to Linear Optics
6(4)
1.5 Local Field Correction
10(5)
Suggested Further Reading
13(2)
PART A SECOND-ORDER PHENOMENA
15(144)
2 Second-Order Susceptibility and Nonlinear Coupled Wave Equations
17(22)
2.1 Anharmonic Oscillator Derivation of Second-Order Susceptibilities
18(5)
2.2 Input Eigenmodes, Permutation Symmetry, and Properties of χ(2)
23(2)
2.3 Slowly Varying Envelope Approximation
25(1)
2.4 Coupled Wave Equations
26(5)
2.5 Manley-Rowe Relations and Energy Conservation
31(8)
Suggested Further Reading
38(1)
3 Optimization and Limitations of Second-Order Parametric Processes
39(30)
3.1 Wave-Vector Matching
39(14)
3.2 Optimizing deff(2)
53(6)
3.3 Numerical Examples
59(10)
References
67(1)
Suggested Further Reading
67(2)
4 Solutions for Plane-Wave Parametric Conversion Processes
69(17)
4.1 Solutions of the Type 1 SHG Coupled Wave Equations
69(8)
4.2 Solutions of the Three-Wave Coupled Equations
77(3)
4.3 Characteristic Lengths
80(1)
4.4 Nonlinear Modes
81(5)
References
84(1)
Suggested Further Reading
85(1)
5 Second Harmonic Generation with Finite Beams and Applications
86(22)
5.1 SHG with Gaussian Beams
86(12)
5.2 Unique and Performance-Enhanced Applications of Periodically Poled LiNbO3 (PPLN)
98(10)
References
107(1)
Suggested Further Reading
107(1)
6 Three-Wave Mixing, Optical Amplifiers, and Generators
108(33)
6.1 Three-Wave Mixing Processes
108(2)
6.2 Manley-Rowe Relations
110(1)
6.3 Sum Frequency Generation
111(2)
6.4 Optical Parametric Amplifiers
113(6)
6.5 Optical Parametric Oscillator
119(9)
6.6 Mid-Infrared Quasi-Phase Matching Parametric Devices
128(13)
References
139(1)
Selected Further Reading
140(1)
7 χ(2) Materials and Their Characterization
141(18)
7.1 Survey of Materials
141(2)
7.2 Oxide-Based Dielectric Crystals
143(1)
7.3 Organic Materials
144(5)
7.4 Measurement Techniques
149(10)
Appendix 7.1 Quantum Mechanical Model for Charge Transfer Molecular Nonlinearities
153(4)
References
157(1)
Suggested Further Reading
158(1)
PART B NONLINEAR SUSCEPTIBILITIES
159(66)
8 Second- and Third-Order Susceptibilities: Quantum Mechanical Formulation
161(36)
8.1 Perturbation Theory of Field Interaction with Molecules
162(7)
8.2 Optical Susceptibilities
169(28)
Appendix 8.1 χijkl Symmetry Properties for Different Crystal Classes
192(4)
Reference
196(1)
Suggested Further Reading
196(1)
9 Molecular Nonlinear Optics
197(28)
9.1 Two-Level Model
198(12)
9.2 Symmetric Molecules
210(5)
9.3 Density Matrix Formalism
215(10)
Appendix 9.1 Two-Level Model for Asymmetric Molecules---Exact Solution
216(2)
Appendix 9.2 Three-Level Model for Symmetric Molecules---Exact Solution
218(4)
References
222(1)
Suggested Further Reading
223(2)
PART C THIRD-ORDER PHENOMENA
225(240)
10 Kerr Nonlinear Absorption and Refraction
227(24)
10.1 Nonlinear Absorption
228(10)
10.2 Nonlinear Refraction
238(5)
10.3 Useful NLR Formulas and Examples (Isotropic Media)
243(8)
Suggested Further Reading
250(1)
11 Condensed Matter Third-Order Nonlinearities due to Electronic Transitions
251(39)
11.1 Device-Based Nonlinear Material Figures of Merit
252(1)
11.2 Local Versus Nonlocal Nonlinearities in Space and Time
253(2)
11.3 Survey of Nonlinear Refraction and Absorption Measurements
255(1)
11.4 Electronic Nonlinearities Involving Discrete States
256(10)
11.5 Overview of Semiconductor Nonlinearities
266(15)
11.6 Glass Nonlinearities
281(9)
Appendix 11.1 Expressions for the Kerr, Raman, and Quadratic Stark Effects
284(2)
References
286(3)
Suggested Further Reading
289(1)
12 Miscellaneous Third-Order Nonlinearities
290(40)
12.1 Molecular Reorientation Effects in Liquids and Liquid Crystals
291(9)
12.2 Photorefractive Nonlinearities
300(6)
12.3 Nuclear (Vibrational) Contributions to n2II(---ω; ω)
306(4)
12.4 Electrostriction
310(2)
12.5 Thermo-Optic Effect
312(2)
12.6 χ(3) via Cascaded χ(2) Nonlinear Processes: Nonlocal
314(16)
Appendix 12.1 Spontaneous Raman Scattering
317(11)
References
328(1)
Suggested Further Reading
329(1)
13 Techniques for Measuring Third-Order Nonlinearities
330(17)
13.1 Z-Scan
332(7)
13.2 Third Harmonic Generation
339(4)
13.3 Optical Kerr Effect Measurements
343(1)
13.4 Nonlinear Optical Interferometry
344(1)
13.5 Degenerate Four-Wave Mixing
345(2)
References
346(1)
Suggested Further Reading
346(1)
14 Ramifications and Applications of Nonlinear Refraction
347(37)
14.1 Self-Focusing and Defocusing of Beams
348(4)
14.2 Self-Phase Modulation and Spectral Broadening in Time
352(2)
14.3 Instabilities
354(9)
14.4 Solitons (Nonlinear Modes)
363(9)
14.5 Optical Bistability
372(3)
14.6 All-Optical Signal Processing and Switching
375(9)
References
382(1)
Suggested Further Reading
383(1)
15 Multiwave Mixing
384(30)
15.1 Degenerate Four-Wave Mixing
385(12)
15.2 Degenerate Three-Wave Mixing
397(2)
15.3 Nondegenerate Wave Mixing
399(15)
Reference
413(1)
Suggested Further Reading
413(1)
16 Stimulated Scattering
414(29)
16.1 Stimulated Raman Scattering
415(16)
16.2 Stimulated Brillouin Scattering
431(12)
References
441(1)
Suggested Further Reading
442(1)
17 Ultrafast and Ultrahigh Intensity Processes
443(22)
17.1 Extended Nonlinear Wave Equation
444(4)
17.2 Formalism for Ultrafast Fiber Nonlinear Optics
448(4)
17.3 Examples of Nonlinear Optics in Fibers
452(8)
17.4 High Harmonic Generation
460(5)
References
462(1)
Suggested Further Reading
463(2)
Appendix: Units, Notation, and Physical Constants
465(2)
A.1 Units of Third-Order Nonlinearity
465(2)
A.2 Values of Useful Constants
467(1)
Reference 467(2)
Index 469
GEORGE I. STEGEMAN, PhD, is Chair Professor in the College of Engineering at KFUPM, Saudi Arabia, and Emeritus Professor at the College of Optics and Photonics (CREOL) of the University of Central Florida (UCF). He is the first recipient of the Cobb Family Eminent Chair in Optical Sciences and Engineering at UCF. Dr. Stegeman is a Fellow of the Optical Society of America and has received the Canadian Association of Physicists's Herzberg Medal for achievement in physics and the Optical Society of America's R.W. Wood Prize.

ROBERT A. STEGEMAN, PhD, has held professional positions at the College of Optical Sciences at The University of Arizona, as well as various industrial companies.