Muutke küpsiste eelistusi

E-raamat: Nonlinear PDEs

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 131,27 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs.

The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrodinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given.

The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.

Arvustused

This book as a whole is more than the sum of its chapters and deserves being slowly and thoughtfully read from the beginning to the end." Michael Zaks, Mathematical Reviews

"This is an excellent text which can be used for several graduate courses in mathematics departments." Dmitry Pelinovsky, Zentralblatt MATH

"The combination of rigor with simultaneous attention to associated real physical systems makes it particularly appealing." William Satzer, MAA Reviews

Preface xi
Chapter 1 Introduction
1(14)
§1.1 The three classical linear PDEs
1(3)
§1.2 Nonlinear PDEs
4(2)
§1.3 Our choice of equations and the idea of modulation equations
6(5)
§1.4 Overview
11(4)
Part I Nonlinear dynamics in Rd
Chapter 2 Basic ODE dynamics
15(60)
§2.1 Linear systems
17(17)
§2.2 Local existence and uniqueness for nonlinear systems
34(4)
§2.3 Special solutions
38(11)
§2.4 ω-limit sets and attractors
49(9)
§2.5 Chaotic dynamics
58(6)
§2.6 Examples
64(11)
Chapter 3 Dissipative dynamics
75(34)
§3.1 Bifurcations
76(9)
§3.2 Center manifold theory
85(6)
§3.3 The Hopf bifurcation
91(7)
§3.4 Routes to chaos
98(11)
Chapter 4 Hamiltonian dynamics
109(24)
§4.1 Basic properties
109(7)
§4.2 Some celestial mechanics
116(5)
§4.3 Completely integrable systems
121(2)
§4.4 Perturbations of completely integrable systems
123(5)
§4.5 Homoclinic chaos
128(5)
Part II Nonlinear dynamics in countably many dimensions
Chapter 5 PDEs on an interval
133(46)
§5.1 From finitely to infinitely many dimensions
134(17)
§5.2 Basic function spaces and Fourier series
151(16)
§5.3 The Chafee-Infante problem
167(12)
Chapter 6 The Navier-Stokes equations
179(26)
§6.1 Introduction
179(7)
§6.2 The equations on a torus
186(11)
§6.3 Other boundary conditions and more general domains
197(8)
Part III PDEs on the infinite line
Chapter 7 Some dissipative PDE models
205(44)
§7.1 The KPP equation
206(16)
§7.2 The Allen-Cahn equation
222(3)
§7.3 Intermezzo: Fourier transform
225(12)
§7.4 The Burgers equation
237(12)
Chapter 8 Three canonical modulation equations
249(46)
§8.1 The NLS equation
250(9)
§8.2 The KdV equation
259(16)
§8.3 The GL equation
275(20)
Chapter 9 Reaction-Diffusion systems
295(20)
§9.1 Modeling, and existence and uniqueness
297(5)
§9.2 Two classical examples
302(5)
§9.3 The Turing instability
307(8)
Part IV Modulation theory and applications
Chapter 10 Dynamics of pattern and the GL equation
315(86)
§10.1 Introduction
316(3)
§10.2 The Swift-Hohenberg equation
319(13)
§10.3 The universality of the GL equation
332(5)
§10.4 An abstract approximation result
337(10)
§10.5 Reaction-Diffusion systems
347(7)
§10.6 Convection problems
354(16)
§10.7 The Couette-Taylor problem
370(8)
§10.8 Attractors for pattern forming systems
378(17)
§10.9 Further remarks
395(6)
Chapter 11 Wave packets and the NLS equation
401(50)
§11.1 Introduction
402(2)
§11.2 Justification in case of cubic nonlinearities
404(7)
§11.3 The universality of the NLS equation
411(5)
§11.4 Quadratic nonlinearities
416(5)
§11.5 Extension of the theory
421(8)
§11.6 Pulse dynamics in photonic crystals
429(11)
§11.7 Nonlinear optics
440(11)
Chapter 12 Long waves and their modulation equations
451(22)
§12.1 An approximation result
452(4)
§12.2 The universality of the KdV equation
456(9)
§12.3 Whitham, Boussinesq, BBM, etc.
465(3)
§12.4 The long wave limit
468(5)
Chapter 13 Center manifold reduction and spatial dynamics
473(24)
§13.1 The center manifold theorem
473(5)
§13.2 Local bifurcation theory on bounded domains
478(4)
§13.3 Spatial dynamics for elliptic problems in a strip
482(2)
§13.4 Applications
484(13)
Chapter 14 Diffusive stability
497(44)
§14.1 Linear and nonlinear diffusive behavior
498(9)
§14.2 Diffusive stability of spatially periodic equilibria
507(16)
§14.3 The critical case
523(6)
§14.4 Phase diffusion equations
529(6)
§14.5 Dispersive dynamics
535(6)
Bibliography 541(26)
List of symbols 567(2)
Index 569
Guido Schneider, Universitat Stuttgart, Germany.

Hannes Uecker, Carl von Ossietzky Universitat Oldenburg, Germany.