Preface |
|
ix | |
|
1 What is nonlinear Perron--Frobenius theory? |
|
|
1 | (25) |
|
1.1 Classical Perron--Frobenius theory |
|
|
1 | (6) |
|
1.2 Cones and partial orderings |
|
|
7 | (4) |
|
1.3 Order-preserving maps |
|
|
11 | (2) |
|
|
13 | (4) |
|
|
17 | (6) |
|
1.6 Integral-preserving maps |
|
|
23 | (3) |
|
2 Non-expansiveness and nonlinear Perron--Frobenius theory |
|
|
26 | (32) |
|
2.1 Hilbert's and Thompson's metrics |
|
|
26 | (8) |
|
|
34 | (4) |
|
|
38 | (5) |
|
2.4 The cone of positive-semidefinite symmetric matrices |
|
|
43 | (2) |
|
|
45 | (3) |
|
2.6 Convexity and geodesics |
|
|
48 | (7) |
|
2.7 Topical maps and the sup-norm |
|
|
55 | (1) |
|
2.8 Integral-preserving maps and the l1-norm |
|
|
56 | (2) |
|
3 Dynamics of non-expansive maps |
|
|
58 | (23) |
|
3.1 Basic properties of non-expansive maps |
|
|
58 | (9) |
|
3.2 Fixed-point theorems for non-expansive maps |
|
|
67 | (3) |
|
3.3 Horofunctions and horoballs |
|
|
70 | (4) |
|
3.4 A Denjoy--Wolff type theorem |
|
|
74 | (3) |
|
3.5 Non-expansive retractions |
|
|
77 | (4) |
|
4 Sup-norm non-expansive maps |
|
|
81 | (15) |
|
4.1 The size of the ω-limit sets |
|
|
81 | (4) |
|
4.2 Periods of periodic points |
|
|
85 | (5) |
|
4.3 Iterates of topical maps |
|
|
90 | (6) |
|
5 Eigenvectors and eigenvalues of nonlinear cone maps |
|
|
96 | (24) |
|
5.1 Extensions of order-preserving maps |
|
|
96 | (4) |
|
|
100 | (6) |
|
5.3 The cone spectral radius |
|
|
106 | (6) |
|
5.4 Eigenvectors corresponding to the cone spectral radius |
|
|
112 | (3) |
|
5.5 Continuity of the cone spectral radius |
|
|
115 | (3) |
|
5.6 A Collatz--Wielandt formula |
|
|
118 | (2) |
|
6 Eigenvectors in the interior of the cone |
|
|
120 | (41) |
|
|
120 | (7) |
|
|
127 | (7) |
|
6.3 Bounded invariant sets |
|
|
134 | (3) |
|
6.4 Uniqueness of the eigenvector |
|
|
137 | (9) |
|
6.5 Convergence to a unique eigenvector |
|
|
146 | (8) |
|
6.6 Means and their eigenvectors |
|
|
154 | (7) |
|
7 Applications to matrix scaling problems |
|
|
161 | (22) |
|
7.1 Matrix scaling: a fixed-point approach |
|
|
161 | (5) |
|
7.2 The compatibility condition |
|
|
166 | (7) |
|
|
173 | (3) |
|
7.4 Doubly stochastic matrices: the classic case |
|
|
176 | (4) |
|
7.5 Scaling to row stochastic matrices |
|
|
180 | (3) |
|
8 Dynamics of subhomogeneous maps |
|
|
183 | (29) |
|
8.1 Iterations on polyhedral cones |
|
|
183 | (5) |
|
8.2 Periodic orbits in polyhedral cones |
|
|
188 | (8) |
|
8.3 Denjoy--Wolff theorems for cone maps |
|
|
196 | (8) |
|
8.4 A Denjoy--Wolff theorem for polyhedral cones |
|
|
204 | (8) |
|
9 Dynamics of integral-preserving maps |
|
|
212 | (43) |
|
9.1 Lattice homomorphisms |
|
|
212 | (5) |
|
9.2 Periodic orbits of lower semi-lattice homomorphisms |
|
|
217 | (8) |
|
9.3 Periodic points and admissible arrays |
|
|
225 | (16) |
|
9.4 Computing periods of admissible arrays |
|
|
241 | (7) |
|
9.5 Maps on the whole space |
|
|
248 | (7) |
|
Appendix A The Birkhoff--Hopf theorem |
|
|
255 | (29) |
|
|
255 | (3) |
|
A.2 Almost Archimedean cones |
|
|
258 | (1) |
|
|
259 | (4) |
|
A.4 The Birkhoff--Hopf theorem: reduction to two dimensions |
|
|
263 | (6) |
|
A.5 Two-dimensional cones |
|
|
269 | (4) |
|
A.6 Completion of the proof of the Birkhoff--Hopf theorem |
|
|
273 | (6) |
|
A.7 Eigenvectors of cone-linear maps |
|
|
279 | (5) |
|
Appendix B Classical Perron--Frobenius theory |
|
|
284 | (16) |
|
B.1 A general version of Perron's theorem |
|
|
284 | (5) |
|
B.2 The finite-dimensional Krein--Rutman theorem |
|
|
289 | (1) |
|
B.3 Irreducible linear maps |
|
|
290 | (1) |
|
B.4 The peripheral spectrum |
|
|
291 | (9) |
Notes and comments |
|
300 | (7) |
References |
|
307 | (12) |
List of symbols |
|
319 | (2) |
Index |
|
321 | |