Muutke küpsiste eelistusi

E-raamat: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability

(Università degli Studi di Trento, Italy)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 30-Jul-2012
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781139534666
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 30-Jul-2012
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781139534666

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book covers solid mechanics for non-linear elastic and elastoplastic materials, describing the behaviour of ductile material subject to extreme mechanical loading and its eventual failure. The book highlights constitutive features to describe the behaviour of frictional materials such as geological media. On the basis of this theory, including large strain and inelastic behaviours, bifurcation and instability are developed with a special focus on the modelling of the emergence of local instabilities such as shear band formation and flutter of a continuum. The former is regarded as a precursor of fracture, while the latter is typical of granular materials. The treatment is complemented with qualitative experiments, illustrations from everyday life and simple examples taken from structural mechanics"--

Arvustused

"The book will be useful to engineers who want to be acquainted with an up-to-date presentation of nonlinear materials. It will also be useful to mathematicians who are interested in comprehensive and realistic modelling of such non linear materials." -Mathematical Reviews

Muu info

Addresses behaviour of materials under extreme mechanical conditions and of failure in terms of non-linear continuum mechanics and instability theory.
Preface xiii
Foreword xv
Giulio Maier
1 Introduction
1(90)
1.1 Bifurcation and instability to explain pattern formation
2(4)
1.2 Bifurcations in elasticity: The elastic cylinder
6(2)
1.3 Bifurcations in elastoplasticity: The Shanley model
8(4)
1.4 Shear bands and strain localization
12(5)
1.5 Bifurcation, softening and size effect as the response of a structure
17(5)
1.6 Chains with softening elements
22(9)
1.7 Shear band saturation and multiple shear banding
31(2)
1.8 Brittle and quasi-brittle materials
33(4)
1.9 Coulomb friction and non-associative plasticity
37(4)
1.10 Non-associative flow rule promotes material instabilities
41(1)
1.11 A perturbative approach to material instability
42(6)
1.12 A summary
48(4)
1.13 Exercises, details and curiosities
52(39)
1.13.1 Exercise: The Euler elastica and the double supported beam subject to compressive load
52(17)
1.13.2 Exercise: Bifurcation of a structure subject to tensile dead load
69(1)
1.13.3 Exercise: Degrees of freedom and number of critical loads of elastic structures
70(3)
1.13.4 Exercise: A structure with a trivial configuration unstable at a certain load, returning stable at higher load
73(7)
1.13.5 Exercise: Flutter and divergence instability in an elastic structure induced by Coulomb friction
80(11)
2 Elements of tensor algebra and analysis
91(34)
2.1 Components onto an orthonormal basis
92(1)
2.2 Dyads
93(2)
2.3 Second-order tensors
95(3)
2.4 Rotation tensors
98(1)
2.5 Positive definite second-order tensors, eigenvalues and eigenvectors
99(2)
2.6 Reciprocal bases: Covariant and contravariant components
101(1)
2.7 Spectral representation theorem
102(1)
2.8 Square root of a tensor
103(1)
2.9 Polar decomposition theorem
104(1)
2.10 On coaxiality between second-order tensors
104(1)
2.11 Fourth-order tensors
105(1)
2.12 On the metric induced by semi-positive definite tensors
106(1)
2.13 The Macaulay bracket operator
107(1)
2.14 Differential calculus for tensors
107(1)
2.15 Gradient
108(2)
2.16 Divergence
110(1)
2.17 Cylindrical coordinates
111(2)
2.18 Divergence theorem
113(1)
2.19 Convexity and quasi-convexity
114(2)
2.20 Examples and details
116(9)
2.20.1 Example: Jordan normal form of a defective tensor with a double eigenvalue
116(1)
2.20.2 Example: Jordan normal form of a defective tensor with a triple eigenvalue
117(1)
2.20.3 Example: Inverse of the acoustic tensor of isotropic elasticity
117(1)
2.20.4 Example: Inverse of the acoustic tensor for a particular class of anisotropic elasticity
118(1)
2.20.5 Example: A representation for the square root of a tensor
118(1)
2.20.6 Proof of a property of the scalar product between two symmetric tensors
119(1)
2.20.7 Example: Inverse and positive definiteness of the fourth-order tensor defining linear isotropic elasticity
120(1)
2.20.8 Example: Inverse and positive definiteness of a fourth-order tensor defining a special anisotropic linear elasticity
121(1)
2.20.9 Example: Inverse of the elastoplastic fourth-order tangent tensor
121(1)
2.20.10 Example: Spectral representation of the elastoplastic fourth-order tangent tensor
122(2)
2.20.11 Example: Strict convexity of the strain energy defining linear isotropic elasticity
124(1)
3 Solid mechanics at finite strains
125(27)
3.1 Kinematics
125(10)
3.1.1 Transformation of oriented line elements
127(2)
3.1.2 Transformation of oriented area elements
129(1)
3.1.3 Transformation of volume elements
129(1)
3.1.4 Angular changes
130(1)
3.1.5 Measures of strain
131(4)
3.2 On material and spatial strain measures
135(2)
3.2.1 Rigid-body rotation of the reference configuration
135(1)
3.2.2 Rigid-body rotation of the current configuration
136(1)
3.3 Motion of a deformable body
137(4)
3.4 Mass conservation
141(1)
3.5 Stress, dynamic forces
142(4)
3.6 Power expended and work-conjugate stress/strain measures
146(4)
3.7 Changes of fields for a superimposed rigid-body motion
150(2)
4 Isotropic non-linear hyperelasticity
152(10)
4.1 Isotropic compressible hyperelastic material
153(2)
4.1.1 Kirchhoff-Saint Venant material
154(1)
4.2 Incompressible isotropic elasticity
155(7)
4.2.1 Mooney-Rivlin elasticity
156(2)
4.2.2 Neo-Hookean elasticity
158(1)
4.2.3 J2-Deformation theory of plasticity
158(1)
4.2.4 The GBG model
159(3)
5 Solutions of simple problems in finitely deformed non-linear elastic solids
162(26)
5.1 Uniaxial plane strain tension and compression of an incompressible elastic block
162(6)
5.2 Uniaxial plane strain tension and compression of Kirchhoff-Saint Venant material
168(2)
5.3 Uniaxial tension and compression of an incompressible elastic cylinder
170(3)
5.4 Simple shear of an elastic block
173(6)
5.5 Finite bending of an incompressible elastic block
179(9)
6 Constitutive equations and anisotropic elasticity
188(35)
6.1 Constitutive equations: General concepts
188(19)
6.1.1 Change in observer and related principle of invariance of material response
189(3)
6.1.2 Indifference with respect to rigid-body rotation of the reference configuration
192(3)
6.1.3 Material symmetries
195(3)
6.1.4 Cauchy elasticity
198(3)
6.1.5 Green elastic or hyperelastic materials
201(2)
6.1.6 Incompressible hyperelasticity and constrained materials
203(4)
6.2 Rate and incremental elastic constitutive equations
207(16)
6.2.1 Elastic laws in incremental and rate form
207(3)
6.2.2 Relative Lagrangean description
210(10)
6.2.3 Hypoelasticity
220(3)
7 Yield functions with emphasis on pressure sensitivity
223(28)
7.1 The Haigh-Westergaard representation
225(4)
7.2 The BP yield function
229(5)
7.2.1 Smoothness of the BP yield surface
233(1)
7.3 Reduction of the BP yield criterion to known cases
234(7)
7.3.1 Drucker-Prager and von Mises yield criteria
236(3)
7.3.2 A comparison of the BP yield criterion with experimental results
239(2)
7.4 Convexity of yield function and yield surface
241(10)
7.4.1 A general convexity result for a class of yield functions
242(4)
7.4.2 Convexity of the BP yield function
246(1)
7.4.3 Generating convex yield functions
247(4)
8 Elastoplastic constitutive equations
251(24)
8.1 The theory of elastoplasticity at small strain
251(6)
8.2 The essential structure of rate elastoplastic constitutive equations at large strain
257(16)
8.2.1 The small strain theory recovered
264(1)
8.2.2 A theory of elastoplasticity based on multiplicative decomposition of the deformation gradient
265(2)
8.2.3 A simple constitutive model for granular materials evidencing flutter instability
267(1)
8.2.4 Elastoplastic coupling in the modelling of granular materials and geomaterials
268(5)
8.3 A summary on rate constitutive equations
273(2)
9 Moving discontinuities and boundary value problems
275(18)
9.1 Moving discontinuities in solids
275(10)
9.1.1 Local jump conditions for propagating discontinuity surfaces
276(4)
9.1.2 Balance equations for regions containing a moving discontinuity surface
280(5)
9.2 Boundary value problems in finite, rate and incremental forms
285(8)
9.2.1 Quasi-static first-order rate problems
287(2)
9.2.2 Incremental non-linear elasticity
289(4)
10 Global conditions of uniqueness and stability
293(17)
10.1 Uniqueness of the rate problem
298(5)
10.1.1 Raniecki comparison solids
299(1)
10.1.2 Associative elastoplasticity
300(2)
10.1.3 `In-loading comparison solid'
302(1)
10.2 Stability in the Hill sense
303(7)
10.2.1 Associative elastoplasticity
304(1)
10.2.2 Stability of a quasi-static deformation process
305(1)
10.2.3 An example: Elastoplastic column buckling
306(4)
11 Local conditions for uniqueness and stability
310(28)
11.1 A local sufficient condition for uniqueness: Positive definiteness of the constitutive operator
311(6)
11.1.1 Uniaxial tension
315(1)
11.1.2 The small strain theory
316(1)
11.2 Singularity of the constitutive operator
317(2)
11.2.1 Uniaxial tension
318(1)
11.2.2 The small strain theory
319(1)
11.3 Strong ellipticity
319(4)
11.3.1 The small strain theory
323(1)
11.4 Ellipticity, strain localisation and shear bands
323(8)
11.4.1 The small strain theory
326(5)
11.5 Flutter instability
331(4)
11.5.1 Onset of flutter
331(1)
11.5.2 Flutter instability for small strain elastoplasticity with isotropic elasticity
332(3)
11.5.3 Physical meaning and consequences of flutter
335(1)
11.6 Other types of local criteria and instabilities
335(1)
11.7 A summary on local and global uniqueness and stability criteria
336(2)
12 Incremental bifurcation of elastic solids
338(47)
12.1 The bifurcation problem
339(1)
12.2 Bifurcations of incompressible elastic solids deformed in plane strain
340(25)
12.2.1 Local uniqueness and stability criteria for Biot plane strain and incompressible elasticity
340(11)
12.2.2 Bifurcations of layered structures: General solution
351(2)
12.2.3 Surface bifurcation
353(2)
12.2.4 Interfacial bifurcations
355(3)
12.2.5 Bifurcations of an elastic incompressible block
358(3)
12.2.6 Incompressible elastic block on a `spring foundation'
361(2)
12.2.7 Multi-layered elastic structures
363(2)
12.3 Bifurcations of an incompressible elastic cylinder
365(10)
12.3.1 Numerical results for bifurcations of an elastic cylinder subject to axial compression
370(5)
12.4 Bifurcation under plane strain bending
375(10)
13 Applications of local and global uniqueness and stability criteria to non-associative elastoplasticity
385(18)
13.1 Local uniqueness and stability criteria for non-associative elastoplasticity at small strain
385(3)
13.2 Axi-symmetric bifurcations of an elastoplastic cylinder under uniaxial stress
388(8)
13.2.1 Results for the axi-symmetric bifurcations of a cylinder
391(5)
13.3 Flutter instability for a finite-strain plasticity model with anisotropic elasticity
396(7)
13.3.1 Examples of flutter instability for plane problems
396(4)
13.3.2 Spectral analysis of the acoustic tensor
400(3)
14 Wave propagation, stability and bifurcation
403(24)
14.1 Incremental waves and bifurcation
405(2)
14.2 Incremental plane waves
407(2)
14.2.1 Non-linear elastic materials
407(2)
14.3 Waves and material instabilities in elastoplasticity
409(11)
14.3.1 Instability of uniform flow
413(6)
14.3.2 A discussion on waves and instability in elastoplasticity
419(1)
14.4 Acceleration waves
420(7)
14.4.1 Non-linear elastic material deformed incrementally
420(1)
14.4.2 Elastoplastic materials
420(7)
15 Post-critical behaviour and multiple shear band formation
427(17)
15.1 One-dimensional elastic models with non-convex energy
428(6)
15.2 Two-dimensional elastoplastic modelling of post-shear banding
434(10)
15.2.1 Post-shear banding analysis
436(3)
15.2.2 Sharp shear banding versus saturation
439(1)
15.2.3 Post-band saturation analysis
439(5)
16 A perturbative approach to material instability
444(63)
16.1 Infinite-body Green's function for a pre-stressed material
447(22)
16.1.1 Quasi-static Green's function
447(10)
16.1.2 The dynamic time-harmonic Green's function for general non-symmetric constitutive equations
457(7)
16.1.3 Effects of flutter instability revealed by a pulsating perturbing dipole
464(5)
16.2 Finite-length crack in a pre-stressed material
469(20)
16.2.1 Finite-length crack parallel to an orthotropy axis
471(9)
16.2.2 The inclined crack
480(2)
16.2.3 Shear bands interacting with a finite-length crack
482(4)
16.2.4 Incremental energy release rate for crack growth
486(3)
16.3 Mode I perturbation of a stiffener in an infinite non-linear elastic material subjected to finite simple shear deformation
489(9)
16.4 The stress state near a shear band and its propagation
498(9)
References 507(20)
Index 527
Davide Bigoni is Professor of Solid and Structural Mechanics at the University of Trento, Italy, where he has been head of the Department of Mechanical and Structural Engineering for the past ten years. He was honored as a Euromech Fellow of the European Mechanics Society. He is co-editor of the Journal of Mechanics of Materials and Structures (an international journal founded by C. R. Steele) and is associate editor of Mechanics Research Communications. He co-edited, with Deseri Luca, Recent Progress in the Mechanics of Defects (2011).