Muutke küpsiste eelistusi

E-raamat: Nonlinear Waves: A Geometrical Approach

(Bulgarian Academy Of Sciences, Bulgaria), (Bulgarian Academy Of Sciences, Bulgaria)
  • Formaat - EPUB+DRM
  • Hind: 35,10 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume provides an in-depth treatment of several equations and systems of mathematical physics, describing the propagation and interaction of nonlinear waves as different modifications of these: the KdV equation, Fornberg–Whitham equation, Vakhnenko equation, Camassa–Holm equation, several versions of the NLS equation, Kaup–Kupershmidt equation, Boussinesq paradigm, and Manakov system, amongst others, as well as symmetrizable quasilinear hyperbolic systems arising in fluid dynamics. Readers not familiar with the complicated methods used in the theory of the equations of mathematical physics (functional analysis, harmonic analysis, spectral theory, topological methods, a priori estimates, conservation laws) can easily be acquainted here with different solutions of some nonlinear PDEs written in a sharp form (waves), with their geometrical visualization and their interpretation. In many cases, explicit solutions (waves) having specific physical interpretation (solitons, kinks, peakons, ovals, loops, rogue waves) are found and their interactions are studied and geometrically visualized. To do this, classical methods coming from the theory of ordinary differential equations, the dressing method, Hirota's direct method and the method of the simplest equation are introduced and applied. At the end, the paradifferential approach is used. This volume is self-contained and equipped with simple proofs. It contains many exercises and examples arising from the applications in mechanics, physics, optics, quantum mechanics, amongst others.

Preface v
1 Introduction
1(20)
1.1 Introduction
1(4)
1.2 Hodograph transformation and canonical forms of linear hyperbolic PDE in R2
5(4)
1.3 Exercises on nonlinear systems of PDE
9(4)
1.4 Linear Volterra equations and evolution PDEs
13(3)
1.5 Concluding remarks
16(5)
2 Traveling waves and their profiles
21(16)
2.1 Introduction
21(1)
2.2 Preliminary notes on the traveling wave solutions of the Fornberg-Whitham equation
22(2)
2.3 Investigation of the case (Al)
24(1)
2.4 Investigation of the case (A2)
25(6)
2.5 Traveling wave solutions of the Vakhnenko equation. Geometrical interpretation
31(6)
3 Explicit formulas to the solutions of several equations of physics and geometry
37(18)
3.1 Introduction
37(1)
3.2 Special solutions of semilinear K-G type equations in the multidimensional case
38(3)
3.3 K-P equation and X, Y shallow water waves in the oceans
41(3)
3.4 Solutions of first order linear and cubic nonlinear first order hyperbolic pseudodifferential equations
44(4)
3.5 Possible generalizations of Proposition 3.3
48(1)
3.6 Exact solutions of Tzitzeica equation
49(6)
4 First integrals of systems of ODE having jump discontinuities
55(16)
4.1 Introduction
55(1)
4.2 Interaction of 2 peakon solutions of the Camassa-Holm equation
56(4)
4.3 First integrals of the dynamical system corresponding to the 6-evolution equation
60(3)
4.4 First integrals of the ODE system corresponding to the Ansatz Eq. (4.3) solutions of the generalized Camassa-Holm Eq. (4.1)
63(3)
4.5 Interaction of kink-peakon solutions to the generalized Camassa-Holm equation. First integral
66(3)
4.6 Concluding remarks
69(2)
5 Introduction to the dressing method and application to the cubic NLS
71(26)
5.1 Introduction
71(1)
5.2 Preliminary notes
72(2)
5.3 Dressing method and Riemann-Hilbert problem. Short survey
74(10)
5.4 Geometrical interpretation of the soliton solutions
84(5)
5.5 Concluding remarks
89(1)
5.6 Appendix. Volterra integral equations in infinite intervals
90(7)
6 Direct methods in soliton theory. Hirota's approach
97(26)
6.1 Simplified Hirota's method in soliton theory
97(9)
6.2 Short description of direct Hirota's approach for finding soliton solutions of some classes of nonlinear PDEs
106(4)
6.3 Bilinear equations of the type C(Dx,Dt)f.f = 0
110(3)
6.4 Interaction of 3 waves to Kadomtsev-Petviashvili equation and of two loop solutions of the Vakhnenko equation
113(3)
6.5 Appendix. Sin-Gordon equation. Fluxons and their interaction
116(7)
6.5.1 Rational solutions of some equations of mathematical physics
121(2)
7 Special type solutions of several evolution PDEs
123(32)
7.1 Introduction
123(1)
7.2 Traveling waves. Method of the auxiliary solution (of the simplest equation)
124(18)
7.3 Traveling waves for some generalized Boussinesq type equations
142(6)
7.3.1 Construction of traveling wave solutions to Boussinesq type PDE
143(5)
7.4 Interaction of two solitons and rogue waves
148(7)
8 Regularity properties of several hyperbolic equations and systems
155(32)
8.1 Introduction
155(1)
8.2 Regularity results on the 2D semilinear wave equation having radially smooth Cauchy data
156(9)
8.3 Wave fronts of the solutions of fully nonlinear symmetric positive systems of PDE
165(11)
8.3.1 Formulation of the main results
166(6)
8.3.2 Proof of Theorem 8.4
172(4)
8.4 Regularizing property of the solutions of a dissipative semilinear wave equation
176(1)
8.5 Formulation and investigation of the main dissipative nonlinear wave equation
177(10)
Bibliography 187(8)
Index 195