List of Figures |
|
xvii | |
List of Tables |
|
xxiii | |
Preface |
|
xxv | |
About the Authors |
|
xxix | |
I Introduction and Review |
|
1 | (64) |
|
|
3 | (30) |
|
1.1 Scientific Objectives of Longitudinal Studies |
|
|
3 | (2) |
|
1.2 Data Structures and Examples |
|
|
5 | (6) |
|
1.2.1 Structures of Longitudinal Data |
|
|
5 | (1) |
|
1.2.2 Examples of Longitudinal Studies |
|
|
6 | (4) |
|
1.2.3 Objectives of Longitudinal Analysis |
|
|
10 | (1) |
|
1.3 Conditional-Mean Based Regression Models |
|
|
11 | (6) |
|
|
12 | (1) |
|
1.3.2 Semiparametric Models |
|
|
12 | (1) |
|
1.3.3 Unstructured Nonparametric Models |
|
|
13 | (1) |
|
1.3.4 Structured Nonparametric Models |
|
|
14 | (3) |
|
1.4 Conditional-Distribution Based Models |
|
|
17 | (6) |
|
1.4.1 Conditional Distribution Functions and Functionals |
|
|
17 | (3) |
|
1.4.2 Parametric Distribution Models |
|
|
20 | (1) |
|
1.4.3 Semiparametric Distribution Models |
|
|
20 | (1) |
|
1.4.4 Unstructured Nonparametric Distribution Models |
|
|
21 | (1) |
|
1.4.5 Structured Nonparametric Distribution Models |
|
|
22 | (1) |
|
1.5 Review of Smoothing Methods |
|
|
23 | (7) |
|
1.5.1 Local Smoothing Methods |
|
|
24 | (3) |
|
1.5.2 Global Smoothing Methods |
|
|
27 | (3) |
|
|
30 | (1) |
|
1.7 Organization of the Book |
|
|
31 | (2) |
|
2 Parametric and Semiparametric Methods |
|
|
33 | (32) |
|
2.1 Linear Marginal and Mixed-Effects Models |
|
|
33 | (7) |
|
2.1.1 Marginal Linear Models |
|
|
34 | (1) |
|
2.1.2 The Linear Mixed-Effects Models |
|
|
35 | (1) |
|
2.1.3 Conditional Maximum Likelihood Estimation |
|
|
36 | (1) |
|
2.1.4 Maximum Likelihood Estimation |
|
|
37 | (1) |
|
2.1.5 Restricted Maximum Likelihood Estimation |
|
|
38 | (1) |
|
2.1.6 Likelihood-Based Inferences |
|
|
39 | (1) |
|
2.2 Nonlinear Marginal and Mixed-Effects Models |
|
|
40 | (3) |
|
2.2.1 Model Formulation and Interpretation |
|
|
40 | (2) |
|
2.2.2 Likelihood-Based Estimation and Inferences |
|
|
42 | (1) |
|
2.2.3 Estimation of Subject-Specific Parameters |
|
|
43 | (1) |
|
2.3 Semiparametric Partially Linear Models |
|
|
43 | (10) |
|
2.3.1 Marginal Partially Linear Models |
|
|
44 | (1) |
|
2.3.2 Mixed-Effects Partially Linear Models |
|
|
45 | (1) |
|
2.3.3 Iterative Estimation Procedure |
|
|
46 | (2) |
|
2.3.4 Profile Kernel Estimators |
|
|
48 | (3) |
|
2.3.5 Semiparametric Estimation by Splines |
|
|
51 | (2) |
|
|
53 | (10) |
|
|
53 | (5) |
|
2.4.2 The ENRICHD BDI Data |
|
|
58 | (5) |
|
2.5 Remarks and Literature Notes |
|
|
63 | (2) |
II Unstructured Nonparametric Models |
|
65 | (82) |
|
3 Kernel and Local Polynomial Methods |
|
|
67 | (30) |
|
3.1 Least Squares Kernel Estimators |
|
|
67 | (2) |
|
3.2 Least Squares Local Polynomial Estimators |
|
|
69 | (1) |
|
3.3 Cross-Validation Bandwidths |
|
|
70 | (3) |
|
3.3.1 The Leave-One-Subject-Out Cross-Validation |
|
|
70 | (1) |
|
3.3.2 A Computation Procedure for Kernel Estimators |
|
|
71 | (1) |
|
3.3.3 Heuristic Justification of Cross-Validation |
|
|
72 | (1) |
|
3.4 Bootstrap Pointwise Confidence Intervals |
|
|
73 | (4) |
|
3.4.1 Resampling-Subject Bootstrap Samples |
|
|
73 | (1) |
|
3.4.2 Two Bootstrap Confidence Intervals |
|
|
74 | (1) |
|
3.4.3 Simultaneous Confidence Bands |
|
|
75 | (2) |
|
|
77 | (6) |
|
|
77 | (2) |
|
|
79 | (4) |
|
3.6 Asymptotic Properties of Kernel Estimators |
|
|
83 | (12) |
|
3.6.1 Mean Squared Errors |
|
|
84 | (1) |
|
3.6.2 Assumptions for Asymptotic Derivations |
|
|
85 | (1) |
|
3.6.3 Asymptotic Risk Representations |
|
|
86 | (7) |
|
3.6.4 Useful Special Cases |
|
|
93 | (2) |
|
3.7 Remarks and Literature Notes |
|
|
95 | (2) |
|
4 Basis Approximation Smoothing Methods |
|
|
97 | (26) |
|
|
97 | (4) |
|
4.1.1 Basis Approximations and Least Squares |
|
|
97 | (2) |
|
4.1.2 Selecting Smoothing Parameters |
|
|
99 | (2) |
|
4.2 Bootstrap Inference Procedures |
|
|
101 | (5) |
|
4.2.1 Pointwise Confidence Intervals |
|
|
101 | (1) |
|
4.2.2 Simultaneous Confidence Bands |
|
|
102 | (1) |
|
|
103 | (3) |
|
|
106 | (4) |
|
|
106 | (2) |
|
|
108 | (2) |
|
4.4 Asymptotic Properties |
|
|
110 | (10) |
|
4.4.1 Conditional Biases and Variances |
|
|
110 | (1) |
|
4.4.2 Consistency of Basis Approximation Estimators |
|
|
111 | (5) |
|
4.4.3 Consistency of B-Spline Estimators |
|
|
116 | (1) |
|
|
117 | (1) |
|
4.4.5 Consistency of Goodness-of-Fit Test |
|
|
118 | (2) |
|
4.5 Remarks and Literature Notes |
|
|
120 | (3) |
|
5 Penalized Smoothing Spline Methods |
|
|
123 | (24) |
|
5.1 Estimation Procedures |
|
|
123 | (3) |
|
5.1.1 Penalized Least Squares Criteria |
|
|
123 | (1) |
|
5.1.2 Penalized Smoothing Spline Estimator |
|
|
124 | (1) |
|
5.1.3 Cross-Validation Smoothing Parameters |
|
|
125 | (1) |
|
5.1.4 Bootstrap Pointwise Confidence Intervals |
|
|
125 | (1) |
|
|
126 | (4) |
|
|
126 | (3) |
|
|
129 | (1) |
|
5.3 Asymptotic Properties |
|
|
130 | (16) |
|
5.3.1 Assumptions and Equivalent Kernel Function |
|
|
130 | (2) |
|
5.3.2 Asymptotic Distributions, Risk and Inferences |
|
|
132 | (4) |
|
5.3.3 Green's Function for Uniform Density |
|
|
136 | (3) |
|
5.3.4 Theoretical Derivations |
|
|
139 | (7) |
|
5.4 Remarks and Literature Notes |
|
|
146 | (1) |
III Time-Varying Coefficient Models |
|
147 | (154) |
|
6 Smoothing with Time-Invariant Covariates |
|
|
149 | (44) |
|
6.1 Data Structure and Model Formulation |
|
|
149 | (3) |
|
|
149 | (1) |
|
6.1.2 The Time-Varying Coefficient Model |
|
|
150 | (1) |
|
6.1.3 A Useful Component-wise Representation |
|
|
151 | (1) |
|
6.2 Component-wise Kernel Estimators |
|
|
152 | (5) |
|
6.2.1 Construction of Estimators through Least Squares |
|
|
152 | (2) |
|
6.2.2 Cross-Validation Bandwidth Choices |
|
|
154 | (3) |
|
6.3 Component-wise Penalized Smoothing Splines |
|
|
157 | (4) |
|
6.3.1 Estimators by Component-wise Roughness Penalty |
|
|
157 | (2) |
|
6.3.2 Estimators by Combined Roughness Penalty |
|
|
159 | (1) |
|
6.3.3 Cross-Validation Smoothing Parameters |
|
|
159 | (2) |
|
6.4 Bootstrap Confidence Intervals |
|
|
161 | (1) |
|
|
162 | (5) |
|
|
162 | (3) |
|
|
165 | (2) |
|
6.6 Asymptotic Properties for Kernel Estimators |
|
|
167 | (13) |
|
6.6.1 Mean Squared Errors |
|
|
167 | (2) |
|
6.6.2 Asymptotic Assumptions |
|
|
169 | (1) |
|
6.6.3 Asymptotic Risk Representations |
|
|
170 | (3) |
|
6.6.4 Remarks and Implications |
|
|
173 | (1) |
|
6.6.5 Useful Special Cases |
|
|
174 | (2) |
|
6.6.6 Theoretical Derivations |
|
|
176 | (4) |
|
6.7 Asymptotic Properties for Smoothing Splines |
|
|
180 | (11) |
|
6.7.1 Assumptions and Equivalent Kernel Functions |
|
|
180 | (2) |
|
6.7.2 Asymptotic Distributions and Mean Squared Errors |
|
|
182 | (3) |
|
6.7.3 Theoretical Derivations |
|
|
185 | (6) |
|
6.8 Remarks and Literature Notes |
|
|
191 | (2) |
|
7 The One-Step Local Smoothing Methods |
|
|
193 | (48) |
|
7.1 Data Structure and Model Interpretations |
|
|
193 | (6) |
|
|
193 | (1) |
|
|
194 | (1) |
|
7.1.3 Model Interpretations |
|
|
195 | (1) |
|
7.1.4 Remarks on Estimation Methods |
|
|
196 | (3) |
|
7.2 Smoothing Based on Local Least Squares Criteria |
|
|
199 | (8) |
|
7.2.1 General Formulation |
|
|
199 | (1) |
|
7.2.2 Least Squares Kernel Estimators |
|
|
200 | (1) |
|
7.2.3 Least Squares Local Linear Estimators |
|
|
200 | (2) |
|
7.2.4 Smoothing with Centered Covariates |
|
|
202 | (4) |
|
7.2.5 Cross-Validation Bandwidth Choice |
|
|
206 | (1) |
|
7.3 Pointwise and Simultaneous Confidence Bands |
|
|
207 | (3) |
|
7.3.1 Pointwise Confidence Intervals by Bootstrap |
|
|
207 | (2) |
|
7.3.2 Simultaneous Confidence Bands |
|
|
209 | (1) |
|
|
210 | (6) |
|
|
210 | (4) |
|
|
214 | (2) |
|
7.5 Asymptotic Properties for Kernel Estimators |
|
|
216 | (23) |
|
7.5.1 Asymptotic Assumptions |
|
|
216 | (1) |
|
7.5.2 Mean Squared Errors |
|
|
217 | (3) |
|
7.5.3 Asymptotic Risk Representations |
|
|
220 | (5) |
|
7.5.4 Asymptotic Distributions |
|
|
225 | (7) |
|
7.5.5 Asymptotic Pointwise Confidence Intervals |
|
|
232 | (7) |
|
7.6 Remarks and Literature Notes |
|
|
239 | (2) |
|
8 The Two-Step Local Smoothing Methods |
|
|
241 | (18) |
|
8.1 Overview and Justifications |
|
|
241 | (3) |
|
|
244 | (3) |
|
8.2.1 General Expression and Properties |
|
|
244 | (2) |
|
8.2.2 Component Expressions and Properties |
|
|
246 | (1) |
|
8.2.3 Variance and Covariance Estimators |
|
|
246 | (1) |
|
8.3 Refining the Raw Estimates by Smoothing |
|
|
247 | (4) |
|
8.3.1 Rationales for Refining by Smoothing |
|
|
248 | (1) |
|
8.3.2 The Smoothing Estimation Step |
|
|
248 | (3) |
|
|
251 | (1) |
|
8.4 Pointwise and Simultaneous Confidence Bands |
|
|
251 | (3) |
|
8.4.1 Pointwise Confidence Intervals by Bootstrap |
|
|
251 | (2) |
|
8.4.2 Simultaneous Confidence Bands |
|
|
253 | (1) |
|
|
254 | (2) |
|
|
254 | (2) |
|
8.6 Remark on the Asymptotic Properties |
|
|
256 | (1) |
|
8.7 Remarks and Literature Notes |
|
|
256 | (3) |
|
9 Global Smoothing Methods |
|
|
259 | (42) |
|
9.1 Basis Approximation Model and Interpretations |
|
|
259 | (2) |
|
9.1.1 Data Structure and Model Formulation |
|
|
259 | (1) |
|
9.1.2 Basis Approximation |
|
|
260 | (1) |
|
9.1.3 Remarks on Estimation Methods |
|
|
260 | (1) |
|
|
261 | (13) |
|
9.2.1 Approximate Least Squares |
|
|
261 | (2) |
|
9.2.2 Remarks on Basis and Weight Choices |
|
|
263 | (1) |
|
9.2.3 Least Squares B-Spline Estimators |
|
|
264 | (2) |
|
9.2.4 Cross-Validation Smoothing Parameters |
|
|
266 | (3) |
|
9.2.5 Conditional Biases and Variances |
|
|
269 | (2) |
|
9.2.6 Estimation of Variance and Covariance Structures |
|
|
271 | (3) |
|
9.3 Resampling-Subject Bootstrap Inferences |
|
|
274 | (8) |
|
9.3.1 Pointwise Confidence Intervals |
|
|
274 | (2) |
|
9.3.2 Simultaneous Confidence Bands |
|
|
276 | (3) |
|
9.3.3 Hypothesis Testing for Constant Coefficients |
|
|
279 | (3) |
|
9.4 R Implementation with the NGHS BP Data |
|
|
282 | (5) |
|
9.4.1 Estimation by B-Splines |
|
|
282 | (3) |
|
9.4.2 Testing Constant Coefficients |
|
|
285 | (2) |
|
9.5 Asymptotic Properties |
|
|
287 | (12) |
|
9.5.1 Integrated Squared Errors |
|
|
287 | (2) |
|
9.5.2 Asymptotic Assumptions |
|
|
289 | (1) |
|
9.5.3 Convergence Rates for Integrated Squared Errors |
|
|
289 | (3) |
|
9.5.4 Theoretical Derivations |
|
|
292 | (4) |
|
9.5.5 Consistent Hypothesis Tests |
|
|
296 | (3) |
|
9.6 Remarks and Literature Notes |
|
|
299 | (2) |
IV Shared-Parameter and Mixed-Effects Models |
|
301 | (102) |
|
10 Models for Concomitant Interventions |
|
|
303 | (60) |
|
10.1 Concomitant Interventions |
|
|
303 | (6) |
|
10.1.1 Motivation for Outcome-Adaptive Covariate |
|
|
303 | (2) |
|
10.1.2 Two Modeling Approaches |
|
|
305 | (1) |
|
10.1.3 Data Structure with a Single Intervention |
|
|
306 | (3) |
|
10.2 Naive Mixed-Effects Change-Point Models |
|
|
309 | (9) |
|
10.2.1 Justifications for Change-Point Models |
|
|
310 | (1) |
|
10.2.2 Model Formulation and Interpretation |
|
|
311 | (2) |
|
10.2.3 Biases of Naive Mixed-Effects Models |
|
|
313 | (5) |
|
10.3 General Structure for Shared Parameters |
|
|
318 | (2) |
|
10.4 The Varying-Coefficient Mixed-Effects Models |
|
|
320 | (9) |
|
10.4.1 Model Formulation and Interpretation |
|
|
320 | (2) |
|
10.4.2 Special Cases of Conditional-Mean Effects |
|
|
322 | (1) |
|
10.4.3 Likelihood-Based Estimation |
|
|
323 | (3) |
|
10.4.4 Least Squares Estimation |
|
|
326 | (1) |
|
10.4.5 Estimation of the Covariances |
|
|
327 | (2) |
|
10.5 The Shared-Parameter Change-Point Models |
|
|
329 | (12) |
|
10.5.1 Model Formulation and Justifications |
|
|
330 | (1) |
|
10.5.2 The Linear Shared-Parameter Change-Point Model |
|
|
331 | (1) |
|
10.5.3 The Additive Shared-Parameter Change-Point Model |
|
|
332 | (1) |
|
10.5.4 Likelihood-Based Estimation |
|
|
333 | (3) |
|
10.5.5 Gaussian Shared-Parameter Change-Point Models |
|
|
336 | (4) |
|
10.5.6 A Two-Stage Estimation Procedure |
|
|
340 | (1) |
|
10.6 Confidence Intervals for Parameter Estimators |
|
|
341 | (2) |
|
10.6.1 Asymptotic Confidence Intervals |
|
|
341 | (1) |
|
10.6.2 Bootstrap Confidence Intervals |
|
|
342 | (1) |
|
10.7 R Implementation to the ENRICHD Data |
|
|
343 | (8) |
|
10.7.1 The Varying-Coefficient Mixed-Effects Models |
|
|
343 | (4) |
|
10.7.2 Shared-Parameter Change-Point Models |
|
|
347 | (4) |
|
|
351 | (9) |
|
10.8.1 The Varying-Coefficient Mixed-Effects Models |
|
|
351 | (4) |
|
10.8.2 Maximum Likelihood Estimators |
|
|
355 | (1) |
|
10.8.3 The Additive Shared-Parameter Models |
|
|
355 | (5) |
|
10.9 Remarks and Literature Notes |
|
|
360 | (3) |
|
11 Nonparametric Mixed-Effects Models |
|
|
363 | (40) |
|
11.1 Objectives of Nonparametric Mixed-Effects Models |
|
|
363 | (1) |
|
11.2 Data Structure and Model Formulation |
|
|
364 | (14) |
|
|
364 | (1) |
|
11.2.2 Mixed-Effects Models without Covariates |
|
|
365 | (3) |
|
11.2.3 Mixed-Effects Models with a Single Covariate |
|
|
368 | (6) |
|
11.2.4 Extensions to Multiple Covariates |
|
|
374 | (4) |
|
11.3 Estimation and Prediction without Covariates |
|
|
378 | (6) |
|
11.3.1 Estimation with Known Covariance Matrix |
|
|
379 | (1) |
|
11.3.2 Estimation with Unknown Covariance Matrix |
|
|
380 | (1) |
|
11.3.3 Individual Trajectories |
|
|
381 | (1) |
|
11.3.4 Cross-Validation Smoothing Parameters |
|
|
382 | (2) |
|
11.4 Functional Principal Components Analysis |
|
|
384 | (6) |
|
11.4.1 The Reduced Rank Model |
|
|
385 | (1) |
|
11.4.2 Estimation of Eigenfunctions and Eigenvalues |
|
|
386 | (3) |
|
11.4.3 Model Selection of Reduced Ranks |
|
|
389 | (1) |
|
11.5 Estimation and Prediction with Covariates |
|
|
390 | (3) |
|
11.5.1 Models without Covariate Measurement Error |
|
|
390 | (1) |
|
11.5.2 Models with Covariate Measurement Error |
|
|
391 | (2) |
|
|
393 | (8) |
|
11.6.1 The BMACS CD4 Data |
|
|
393 | (5) |
|
|
398 | (3) |
|
11.7 Remarks and Literature Notes |
|
|
401 | (2) |
V Nonparametric Models for Distributions |
|
403 | (126) |
|
12 Unstructured Models for Distributions |
|
|
405 | (38) |
|
12.1 Objectives and General Setup |
|
|
405 | (4) |
|
|
405 | (1) |
|
|
406 | (2) |
|
12.1.3 Estimation of Conditional Distributions |
|
|
408 | (1) |
|
12.1.4 Rank-Tracking Probability |
|
|
408 | (1) |
|
12.2 Data Structure and Conditional Distributions |
|
|
409 | (7) |
|
|
409 | (2) |
|
12.2.2 Conditional Distribution Functions |
|
|
411 | (1) |
|
12.2.3 Conditional Quantiles |
|
|
411 | (1) |
|
12.2.4 Rank-Tracking Probabilities |
|
|
412 | (2) |
|
12.2.5 Rank-Tracking Probability Ratios |
|
|
414 | (1) |
|
12.2.6 Continuous and Time-Varying Covariates |
|
|
415 | (1) |
|
|
416 | (13) |
|
12.3.1 Conditional Distribution Functions |
|
|
416 | (2) |
|
12.3.2 Conditional Cumulative Distribution Functions |
|
|
418 | (2) |
|
12.3.3 Conditional Quantiles and Functionals |
|
|
420 | (1) |
|
12.3.4 Rank-Tracking Probabilities |
|
|
421 | (2) |
|
12.3.5 Cross-Validation Bandwidth Choices |
|
|
423 | (4) |
|
12.3.6 Bootstrap Pointwise Confidence Intervals |
|
|
427 | (2) |
|
|
429 | (3) |
|
|
429 | (3) |
|
12.5 Asymptotic Properties |
|
|
432 | (9) |
|
12.5.1 Asymptotic Assumptions |
|
|
433 | (1) |
|
12.5.2 Asymptotic Mean Squared Errors |
|
|
434 | (4) |
|
12.5.3 Theoretical Derivations |
|
|
438 | (3) |
|
12.6 Remarks and Literature Notes |
|
|
441 | (2) |
|
13 Time-Varying Transformation Models - I |
|
|
443 | (28) |
|
13.1 Overview and Motivation |
|
|
443 | (1) |
|
13.2 Data Structure and Model Formulation |
|
|
444 | (2) |
|
|
444 | (1) |
|
13.2.2 The Time-Varying Transformation Models |
|
|
445 | (1) |
|
13.3 Two-Step Estimation Method |
|
|
446 | (11) |
|
13.3.1 Raw Estimates of Coefficients |
|
|
446 | (2) |
|
13.3.2 Bias, Variance and Covariance of Raw Estimates |
|
|
448 | (3) |
|
13.3.3 Smoothing Estimators |
|
|
451 | (2) |
|
|
453 | (3) |
|
13.3.5 Bootstrap Confidence Intervals |
|
|
456 | (1) |
|
|
457 | (3) |
|
|
457 | (3) |
|
13.5 Asymptotic Properties |
|
|
460 | (9) |
|
13.5.1 Conditional Mean Squared Errors |
|
|
461 | (1) |
|
13.5.2 Asymptotic Assumptions |
|
|
461 | (1) |
|
13.5.3 Asymptotic Risk Expressions |
|
|
462 | (2) |
|
13.5.4 Theoretical Derivations |
|
|
464 | (5) |
|
13.6 Remarks and Literature Notes |
|
|
469 | (2) |
|
14 Time-Varying Transformation- Models - II |
|
|
471 | (40) |
|
14.1 Overview and Motivation |
|
|
471 | (2) |
|
14.2 Data Structure and Distribution Functionals |
|
|
473 | (6) |
|
|
473 | (1) |
|
14.2.2 Conditional Distribution Functions |
|
|
473 | (1) |
|
14.2.3 Conditional Quantiles |
|
|
474 | (1) |
|
14.2.4 Rank-Tracking Probabilities |
|
|
475 | (1) |
|
14.2.5 Rank-Tracking Probability Ratios |
|
|
476 | (1) |
|
14.2.6 The Time-Varying Transformation Models |
|
|
477 | (2) |
|
14.3 Two-Step Estimation and Prediction Methods |
|
|
479 | (9) |
|
14.3.1 Raw Estimators of Distribution Functions |
|
|
479 | (1) |
|
14.3.2 Smoothing Estimators for Conditional CDFs |
|
|
480 | (3) |
|
14.3.3 Smoothing Estimators for Quantiles |
|
|
483 | (1) |
|
14.3.4 Estimation of Rank-Tracking Probabilities |
|
|
483 | (2) |
|
14.3.5 Estimation of Rank-Tracking Probability Ratios |
|
|
485 | (1) |
|
|
485 | (3) |
|
|
488 | (4) |
|
14.4.1 Conditional CDF for the. NGHS SBP Data |
|
|
488 | (2) |
|
14.4.2 RTP and RTPR for the NGHS SBP Data |
|
|
490 | (2) |
|
14.5 Asymptotic Properties |
|
|
492 | (18) |
|
14.5.1 Asymptotic Assumptions |
|
|
492 | (1) |
|
14.5.2 Raw Baseline and Distribution Function Estimators |
|
|
493 | (4) |
|
14.5.3 Local Polynomial Smoothing Estimators |
|
|
497 | (6) |
|
14.5.4 Theoretical Derivations |
|
|
503 | (7) |
|
14.6 Remarks and Literature Notes |
|
|
510 | (1) |
|
15 Tracking with Mixed-Effects Models |
|
|
511 | (18) |
|
15.1 Data Structure and Models |
|
|
511 | (3) |
|
|
511 | (1) |
|
15.1.2 The Nonparametric Mixed-Effects Models |
|
|
512 | (1) |
|
15.1.3 Conditional Distributions and Tracking Indices |
|
|
512 | (2) |
|
15.2 Prediction and Estimation Methods |
|
|
514 | (9) |
|
15.2.1 B-spline Prediction of Trajectories |
|
|
514 | (3) |
|
15.2.2 Estimation with Predicted Outcome Trajectories |
|
|
517 | (4) |
|
15.2.3 Estimation Based on Split Samples |
|
|
521 | (1) |
|
15.2.4 Bootstrap Pointwise Confidence Intervals |
|
|
522 | (1) |
|
15.3 R Implementation with the NGHS Data |
|
|
523 | (3) |
|
15.3.1 Rank-Tracking for BMI |
|
|
523 | (3) |
|
15.3.2 Rank-Tracking for SBP |
|
|
526 | (1) |
|
15.4 Remarks and Literature Notes |
|
|
526 | (3) |
Bibliography |
|
529 | (12) |
Index |
|
541 | |