Muutke küpsiste eelistusi

E-raamat: Nonregular Nanosystems: Theory and Applications

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents a systemic view of nanophenomena in terms of disordered condensed media with characteristics arising at various hierarchical levels from nanoagents/nanoparticles through multiple technological interfaces to the creation of micro- or mesostructures with essential nanodimensional effects. These properties can be seen in various schemes for the functionalization of nanocarbon systems, namely, CNTs, GNRs, GNFs, carbon-based nanoaerogels, nanofoams, and so on, where nonregularities characterize surface nanointeractions and various nanointerconnects, resulting in both predictable and unpredictable effects. Beginning with nanosensing and finishing with other forms of functionalized nanomaterials, these effects will define the prospective qualities of future consumer nanoproducts and nanodevices. This book covers all aspects of nonregular nanosystems arising from the fundamental properties of disordered nanosized media, from electronic structure, surface nanophysics, and allotropic forms of carbon such as graphene and fullerenes including defect characterization, to spintronics and 3D device principles.

Nonregular Nanosystems will be of interest to students and specialists in various fields of nanotechnology and nanoscience, experts on surface nanophysics and nanochemistry, as well as managers dealing with marketing of nanoproducts and consumer behavior research.

1 Introduction to Non-regular Nanosystems
1(6)
2 General Approach to the Description of Fundamental Properties of Disordered Nanosized Media
7(26)
2.1 Introduction
7(3)
2.2 Correlation of Atomic and Electronic Structures
10(3)
2.3 Order and Disorder
13(5)
2.4 Concepts of Modelling Atomic Nanostructures
18(4)
2.5 Concepts of Nanoporous and Nanocomposite Materials
22(4)
2.5.1 Nanoporous Materials
23(2)
2.5.2 Aerogels
25(1)
2.5.3 Nanocomposites
26(1)
2.6 Scaling in Functional Nanomedia
26(2)
2.7 Concluding Remarks
28(5)
References
28(5)
3 Potentials and Electronic Structure Calculations of Non-regular Nanosystems
33(44)
3.1 Introduction
33(1)
3.2 Atomic Potential Functions
33(6)
3.2.1 Construction of Atomic Potential Functions
34(5)
3.3 `Crystalline' Potentials
39(2)
3.4 Potentials of Charged Defects
41(3)
3.5 Electronic Structure and Total Energy: Atoms, Molecules and Nanoclusters
44(5)
3.6 Interatomic Interaction Potentials and Force Calculations
49(1)
3.7 Multiple Scattering Theory and Effective Media Approach
50(12)
3.7.1 Methods of Electronic Structure Calculation of Non-regular Condensed Materials
51(3)
3.7.2 Non-regular Condensed Medium: `Liquid Metal' Model
54(5)
3.7.3 A Model of a Non-regular Material in the Cluster Approach
59(1)
3.7.4 Scattering on the General Type Potential
60(2)
3.8 Monoatomic Nanosystems: Nano-Si, Nano-Se
62(7)
3.8.1 Production of Nanosilicon
62(2)
3.8.2 Nanosilicon: Calculations of Electronic Structure
64(2)
3.8.3 Selenium Versus Nano-selenium
66(2)
3.8.4 Nano-selenium: Calculations of Electronic Structure
68(1)
3.9 Nanocompounds: Nanochalcogenides
69(8)
3.9.1 Binary and Ternary Chalcogenide Glassy Systems
71(3)
References
74(3)
4 Scattering Processes in Nanocarbon-Based Nanointerconnects
77(38)
4.1 Non-regularities in Nanointerconnects
78(3)
4.1.1 Scattering Processes in Nanocarbon-Based Nanointerconnects
80(1)
4.2 Electronic Structure Calculations of Nanocarbon-Based Interfaces
81(5)
4.3 Electromagnetics of CNT and Graphene-Based Systems
86(29)
4.3.1 `Liquid Metal' Model for CNT-Metal Junction: CNT-Nicase
86(2)
4.3.2 Model of `Effective Bonds' for Simulations of CNT-Me and GNR-Me Junctions
88(1)
4.3.3 SWCNT and SL and ML GNR Simulations
89(7)
4.3.4 Parametric Calculations of CNT-Me Interconnect Resistances
96(1)
4.3.5 Resistance MWCNT-Me Junctions
96(4)
4.3.6 Current Loss Between the Adjacent Shells Inside the MWCNT
100(6)
4.3.7 Resistances and Capacitances of SL GNR-Me, ML GNR-Me Interconnects
106(1)
4.3.8 Frequency Properties of CNT-Me and GNR-Me Interconnects
107(3)
4.3.9 Concluding Remarks
110(2)
References
112(3)
5 Surface Nanophysics: Macro-, Meso-, Micro- and Nano-approaches
115(32)
5.1 Surface: Thermodynamics, Anisotropy
115(5)
5.2 Physical and Chemical Adsorption, Adsorption Kinetics
120(6)
5.3 Gibbs Adsorption Isotherms
126(6)
5.4 Hydrogen Adsorption
132(1)
5.5 Electronic Structure of Surface
133(7)
5.6 Surface Plasmon Resonance
140(1)
5.7 Interaction of Light and Nanoparticle
141(3)
5.8 Nanoshells
144(1)
5.9 Organic-Nonorganic Interfaces
145(2)
References
145(2)
6 Classification and Operating Principles of Nanodevices
147(60)
6.1 Classification
147(5)
6.1.1 Correlations of the Fundamental Properties of Non-regular Materials
147(3)
6.1.2 Nanosensoring Paradigm
150(2)
6.2 Physical Nanosensors
152(11)
6.3 Chemical Nanosensors
163(2)
6.4 Bio-nanosensors
165(2)
6.5 Memory Nanodevices
167(10)
6.6 Biomolecular Rotary Machines
177(1)
6.7 Nanotransducers
178(9)
6.7.1 Optical Nanotransducers
180(2)
6.7.2 Mechanical Nanotransducers
182(1)
6.7.3 Electrochemical Nanotransducers
182(3)
6.7.4 Magnetic Nanotransducers
185(2)
6.8 Nanoaerogels and Nanofoams
187(6)
6.8.1 Introduction to Aerogels
187(2)
6.8.2 Aerogels Forms and Characterization
189(2)
6.8.3 Aerogels Commercialization
191(1)
6.8.4 Functionalization
192(1)
6.9 Biocomposites
193(14)
6.9.1 Biocomposite Concepts and Definitions
193(1)
6.9.2 Bio-nanocomposites from Renewable Resources
193(4)
6.9.3 Bio-nanocomposite Applications
197(2)
References
199(8)
7 CNT and Graphene Growth: Growing, Quality Control, Thermal Expansion and Chiral Dispersion
207(46)
7.1 The Iijima Method for Growing CNTs and Graphene
207(3)
7.1.1 Arc Discharge
207(2)
7.1.2 Purification
209(1)
7.2 Arc Discharge and Induced Non-regularities
210(2)
7.3 Laser Ablation and Self-Organization of Matter
212(3)
7.3.1 Laser Ablation
212(2)
7.3.2 Chemical Vapour Deposition
214(1)
7.4 Simulations of Growth: Sporadic and Stimulated
215(6)
7.4.1 CNT Growth Mechanism
215(1)
7.4.2 The Tip-Growth Mechanism
216(1)
7.4.3 The Base-Growth Mechanism
216(2)
7.4.4 Several Control Strategies
218(1)
7.4.5 Quality Control
219(2)
7.5 Graphene Growth and Technological Defects
221(3)
7.5.1 Defects in Graphene
222(2)
7.6 Simulation of Magnetically Stimulated CVD CNT Growth
224(29)
7.6.1 Research Motivation
225(3)
7.6.2 CNT Growth in the Chemical Vapour Deposition Process Based on Metal Nanoparticles
228(1)
7.6.3 CVD Process Analysis
229(2)
7.6.4 Advantages of CVD
231(2)
7.6.5 CNT Precursors
233(1)
7.6.6 CNT Growth Control
233(2)
7.6.7 Magnetically Stimulated CNT CVD Growth on Fe-Pt Catalysts
235(1)
7.6.8 Effective Bonds Model for CNT-Fe-Pt Interconnect Electromagnetic Properties
235(2)
7.6.9 CNT-FexPt1--x Interconnect Formation
237(3)
7.6.10 Magnetic Properties of Fe--Pt Alloys
240(1)
7.6.11 Magnetically Stimulated CNT Growth
241(2)
7.6.12 Model of CVD CNT Growth with the Probabilistically Predefined Morphology
243(2)
References
245(8)
8 Graphene, Fullerenes, Carbon Nanotubes: Electronic Subsystem
253(34)
8.1 Carbon: Allotropic Forms
253(10)
8.2 Carbon Derivatives: Formation of Electronic System
263(2)
8.3 Graphene Electronic Structure
265(3)
8.4 Il-Zones for Nanotubes (n,0), Nanotubes (n,n)
268(4)
8.5 Nanotubes: Electronic Angular Momentum and Spin-Dependent Properties
272(2)
8.6 Nanotubes of the Metal Type and of the Semiconductor Type
274(2)
8.7 Chemistry of Nanotubes: Catalysis and Toxicity
276(3)
8.8 The Influence of Defects on Electrical, Mechanical and Thermal Properties of Graphene
279(1)
8.9 Defected Nanocarbon Systems
280(7)
References
282(5)
9 Spintronics and Nanomemory Systems
287(22)
9.1 Spin Transport Fundamentals
287(3)
9.2 Magnetoresistance Nanodevices
290(3)
9.2.1 Spin Valve Concepts
290(2)
9.2.2 Spintronic Device Descriptions
292(1)
9.3 Magnetic Disorder and Spin Transport
293(12)
9.3.1 Magnetic Disorder in Fe--Pt Nanodrops
294(11)
9.4 Concluding Remarks
305(4)
References
305(4)
10 Nanosensor Systems Simulations
309(28)
10.1 Physical and Chemical Nanosensors
310(5)
10.1.1 Conductivity as a Tool of Nanosensor Systems
310(5)
10.2 Bio-nanosensors: Polymer Nanoporous Model Structures
315(5)
10.2.1 Biosensor Model Testing and Experimental Results
316(4)
10.3 Nanocomposite-Based Nanosensoring Devices
320(11)
10.3.1 Real-Time Polymer Nanocomposite-Based Physical Nanosensors
320(4)
10.3.2 Models of CNT- and GNR-Based Nanocomposites
324(3)
10.3.3 Simulation of Stress- and Temperature-Induced Resistance of Carbon-Based Nanocomposite Sensors: Results and Discussions
327(4)
10.4 Concluding Remarks
331(6)
References
333(4)
11 Nanotechnology Application Challenges: Nanomanagement, Nanorisks and Consumer Behaviour
337(60)
11.1 Consumer Insights into Nanotechnology: Introduction to Rational Consumerism and Consumer Behaviour
337(2)
11.2 Nanoscience and Nanotechnology: What Is Special About `Nano' and Why Should Consumers Be Informed?
339(4)
11.3 Basic Categories of Nanotechnology-Based Consumer Products on the Market and Consumer Awareness
343(14)
11.4 Towards an Open Dialogue with Consumers on the Benefits and Risks of Nanotechnology-Engaged Products
357(6)
11.5 New Technologies and Responsible Scientific Consumption in Constructing Consumer Identity
363(3)
11.6 Knowledge Management as a Means of Social Change: Who Needs Nanotechnology Education?
366(5)
11.7 Convergence of Science, Technology and Society: Nano-Bio-Info-Cogno-Socio-Humanosciences and Technologies - A Way to NBICSH Society
371(5)
11.8 Global Citizenship Competence: The Vision for Educational Change
376(2)
11.9 Nanochallenges: Nanomanagement, Nanoeducation, Nanothinking and Public Participatory Technology Assessment (pTA)
378(11)
11.9.1 Nanomanagement: Risks Versus Benefits
380(3)
11.9.2 Nanoeducation and the Global Consciousness
383(2)
11.9.3 Nanothinking as an Educational Concept of the Twenty-First Century
385(2)
11.9.4 Public Participatory Technology Assessment (pTA) in Risk Management
387(2)
11.10 Concluding Remarks
389(8)
References
392(5)
Index 397