Muutke küpsiste eelistusi

E-raamat: Nonsampling Error in Social Surveys

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 30-Jul-2013
  • Kirjastus: SAGE Publications Inc
  • Keel: eng
  • ISBN-13: 9781483323756
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 70,40 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 30-Jul-2013
  • Kirjastus: SAGE Publications Inc
  • Keel: eng
  • ISBN-13: 9781483323756
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

For statistical and social scientists involved in survey research, McNabb (Pacific Lutheran U.) identifies the most common sources of nonsampling error in social surveys--frame, measurement, response, nonresponse, and interviewer errors--and explains their definitions, classification, causes, sources, and examples of current practice in detecting and controlling them. He includes introductory chapters on fundamental concepts and issues in survey error and methodology, ethics, classifying nonsampling error, and the research paradigms of the total survey error model and the cognitive aspects of survey methodology model, as well as a concluding chapter on the methods and tools survey designers and researchers use to detect and control nonsampling error. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

A welcome and much-needed addition to the literature on survey data quality in social research, Nonsampling Error in Social Surveys, by David E. McNabb, examines the most common sources of nonsampling error: frame error; measurement error; response error, nonresponse error, and interviewer error. Offering the only comprehensive and non-technical treatment available, the book’s focus on controlling error shows readers how to eliminate the opportunity for error to occur, and features revealing examples of past and current efforts to control the incidence and effects of nonsampling error. Most importantly, it gives readers the tools they need to understand, identify, address, and prevent the most prevalent and difficult-to-control types of survey errors.

This is a book about what many survey scientists believe to be the largest source of error: nonsampling error. It is the only contemporary and comprehensive treatment of six different classes of nonsampling error, and is unique in its focus on controlling errors by showing how to eliminate the opportunity for them to occur. It includes a chapter on the prevailing paradigm in dealing with survey error, total survey error, and a section on ethics in survey research in the first chapter.

Arvustused

"Provides the best non-technical introduction to the nonsampling errors I have ever read." -- Dmitriy Poznyak "My doctoral students came from a variety of backgrounds. Most of them have little to zero survey research background. The book will serve to ignite class discussion and move it to the highest level." -- Valentin Ekiaka Nzai,

List of Boxes
viii
List of Figures
x
List of Tables
xi
Preface xii
About the Author xv
PART I ISSUES IN NONSAMPLING ERROR RESEARCH
1(64)
1 Issues in Data Quality and Survey Ethics
2(21)
Early Efforts to Improve Data Quality
3(4)
Functional Bases of Survey Quality
7(2)
Survey Data and Measurement Quality
9(2)
Quality Indicators
11(4)
Ethics and Error in the Survey Process
15(5)
Conclusion
20(3)
2 Nonsampling Error in Sample Surveys
23(21)
Survey Bias and Variance
27(3)
Taxonomy of Survey Error
30(1)
Controlling Survey Error
30(5)
Data Collection and Processing Error
35(6)
Where the Problems Begin
41(1)
Conclusion
42(2)
3 The Total Survey Error Paradigm
44(21)
Importance of Sample Surveys
44(1)
Total Survey Error
45(2)
The Total Survey Error Paradigm
47(1)
Total Survey Quality
48(6)
Total Survey Error Analysis
54(1)
An Alternative Cognitive Paradigm
54(5)
Measurement Theory and Other Paradigms
59(3)
Conclusion
62(3)
PART II MAJOR SOURCES OF NONSAMPLING ERROR IN SOCIAL SURVEYS
65(104)
4 Defining and Classifying Nonsampling Error
66(15)
Nonsampling Error Defined
66(2)
Classifying Nonsampling Error
68(5)
Methods of Identifying Nonsampling
Error in Surveys
73(5)
Conclusion
78(3)
5 Frame Error
81(16)
Defining Sample Frame Error
82(1)
Classes of Frame Error
83(1)
Sources of Sample Frame Error
83(3)
Survey Frame Error and Estimate Bias
86(2)
Reducing Frame Error
88(4)
Reducing Frame Error With Address-Based Sampling
92(2)
Conclusion
94(3)
6 Measurement Error
97(17)
Measurement Error Defined
97(1)
Classes of Measurement Error
98(3)
When Measurement Error Occurs
101(1)
Primary Sources of Measurement Error
101(4)
Other Sources of Measurement Error
105(4)
Control of Measurement Error
109(2)
Conclusion
111(3)
7 Response Error
114(21)
Response Error Defined
114(1)
Classes of Response Error
115(1)
Response Error Behavior
115(3)
Causes of Response Error
118(2)
Sources of Response Error
120(8)
Controlling Response Error
128(4)
Conclusion
132(3)
8 Nonresponse Error
135(16)
Nonresponse Error Defined
136(1)
Why Worry About Response Rates?
137(1)
Classes of Nonresponse Error
138(2)
Sources of Nonresponse Error
140(5)
Controlling Nonresponse Error
145(3)
Conclusion
148(3)
9 Interviewer Error
151(18)
Interviewer Error Defined
151(3)
Classes of Interviewer Error
154(1)
Causes of Interviewer Error
154(3)
Behavioral Causes of Interviewer Error
157(2)
Sources of Interviewer Error
159(1)
Controlling Interviewer Error
159(3)
Example Control Efforts
162(4)
Conclusion
166(3)
PART III ERROR CONTROL APPLICATIONS
169(24)
10 Tools for Identifying Nonsampling Error in Survey Data
170(23)
Search for a Data Error Model
171(1)
Patterns in Numerical Data t
172(9)
Statistical Checks for Error Regardless of Source
181(9)
Conclusion
190(3)
Appendices
193(20)
Appendix A Glossary of Nonsampling Error Terms
194(16)
Appendix B Standards and Guidelines for Statistical Surveys
210
Appendix C Deming's
14(199)
Points for Quality 213(2)
References and Bibliography 215(28)
Index 243
Dr. David E. McNabb is a Professor Emeritus and an adjunct professor at the Pacific Lutheran University School of Business. He has taught undergraduate and graduate business courses for the University of MarylandUniversity College in Europe, the American University in Bulgaria, the Stockholm School of Economics in Riga, Latvia, and a regional business education program in Northern France. He has also taught for several years for the MPA program at Evergreen State College, the Oregon State University, the University of WashingtonTacoma, and Olympic College. He served as a member of a consulting team investigating nonsampling error remediation for the US Census Bureau. The first edition of his book Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches received the Grenzebach Prize for Outstanding Published Scholarship in Philanthropy.