Muutke küpsiste eelistusi

E-raamat: Normal Forms and Stability of Hamiltonian Systems

  • Formaat: EPUB+DRM
  • Sari: Applied Mathematical Sciences 218
  • Ilmumisaeg: 11-Aug-2023
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031330469
  • Formaat - EPUB+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Applied Mathematical Sciences 218
  • Ilmumisaeg: 11-Aug-2023
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031330469

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book introduces the reader to the study of Hamiltonian systems, focusing on the stability of autonomous and periodic systems and expanding to topics that are usually not covered by the canonical literature in the field. It emerged from lectures and seminars given at the Federal University of Pernambuco, Brazil, known as one of the leading research centers in the theory of Hamiltonian dynamics.





This book starts with a brief review of some results of linear algebra and advanced calculus, followed by the basic theory of Hamiltonian systems. The study of normal forms of Hamiltonian systems is covered by Ch.3, while Chapters 4 and 5 treat the normalization of Hamiltonian matrices. Stability in non-linear and linear systems are topics in Chapters 6 and 7. This work finishes with a study of parametric resonance in Ch. 8. All the background needed is presented, from the Hamiltonian formulation of the laws of motion to the application of the Krein-Gelfand-Lidskii theory of stronglystable systems.





With a clear, self-contained exposition, this work is a valuable help to advanced undergraduate and graduate students, and to mathematicians and physicists doing research on this topic.

Arvustused

The book is self-contained. This comes out in the superb presentation of the material, with plenty of examples that illustrate the concepts and the methods surveyed throughout the text. The book can be used both as a textbook for courses at the graduate level and as a reference book for researchers who need these techniques in dealing with the analysis of stability of equilibria in problems of classical mechanics. (Juan R. Pacha, Mathematical Reviews, December, 2024)





Hamiltonian systems, their stability and their normal forms are the main topics of this book. These are presented in an historical context that gives the reader a good sense of their development over time while identifying the major contributors to the theory. Authors preface does a particularly good job here identifying the origins and motivations of the ideas and describing how all the various parts concepts, methods and tools fit together. (William J. Satzer Jr., zbMATH 1533.37001, 2024)

Foreword.- Preliminaries on Advanced Calculus.- Hamiltonian Systems Theory.- Normal Forms of Hamiltonian Systems.- Spectral Decomposition of Hamiltonian Matrices.- The General Linear Normalization.- Stability of Equilibria.- Stability of Linear Hamiltonian Systems.- Parametric Resonance.- References.- Index.

Hildeberto Cabral is an Emeritus Professor at the Federal University of Pernambuco, Brazil. He did his PhD at the University of California, Berkeley (1972), after getting a Master's degree from the Institute of Pure and Applied MathematicsIMPA, Brazil. He does research on dynamical systems, focusing on Hamiltonian systems, celestial mechanics, stability of equilibria, and periodic solutions.





Lścia Brandćo Dias is an Associate Professor at the Federal University of Rondōnia, Brazil. She holds a PhD in Mathematics (2007) from the Federal University of Pernambuco, Brazil, with post-doc studies at the same university. Her research interests lie in Hamiltonian systems, differential equations, and n-body problems.