Preface |
|
xvii | |
Abbreviations |
|
xix | |
Operators and Symbols |
|
xx | |
SI-Units |
|
xxi | |
Introduction |
|
1 | (8) |
|
|
1 | (1) |
|
2 What is Continuum Mechanics? |
|
|
1 | (2) |
|
2.1 Hypothesis of Continuum Mechanics |
|
|
1 | (1) |
|
|
2 | (1) |
|
3 Scales of material Studies |
|
|
3 | (3) |
|
3.1 Scale Study of Continuum Mechanics |
|
|
3 | (3) |
|
4 The Initial Boundary Value Problem (IBVP) |
|
|
6 | (3) |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (116) |
|
|
9 | (1) |
|
1.2 Algebraic Operations with Vectors |
|
|
10 | (6) |
|
|
16 | (4) |
|
1.3.1 Cartesian Coordinate System |
|
|
16 | (1) |
|
1.3.2 Vector Representation in the Cartesian Coordinate System |
|
|
17 | (3) |
|
1.3.3 Einstein Summation Convention (Einstein Notation) |
|
|
20 | (1) |
|
|
20 | (8) |
|
|
22 | (1) |
|
|
22 | (1) |
|
1.4.1.2 Permutation Symbol |
|
|
23 | (5) |
|
1.5 Algebraic Operations with Tensors |
|
|
28 | (63) |
|
|
28 | (4) |
|
1.5.1.1 Component Representation of a Second-Order Tensor in the Cartesian Basis |
|
|
32 | (2) |
|
1.5.2 Properties of Tensors |
|
|
34 | (1) |
|
|
34 | (2) |
|
1.5.2.2 Symmetry and Antisymmetry |
|
|
36 | (6) |
|
1.5.2.3 Cofactor Tensor. Adjugate of a Tensor |
|
|
42 | (1) |
|
|
42 | (2) |
|
1.5.2.5 Particular Tensors |
|
|
44 | (1) |
|
1.5.2.6 Determinant of a Tensor |
|
|
45 | (3) |
|
1.5.2.7 Inverse of a Tensor |
|
|
48 | (3) |
|
1.5.2.8 Orthogonal Tensors |
|
|
51 | (1) |
|
1.5.2.9 Positive Definite Tensor, Negative Definite Tensor and Semi-Definite Tensors |
|
|
52 | (1) |
|
1.5.2.10 Additive Decomposition of Tensors |
|
|
53 | (1) |
|
1.5.3 Transformation Law of the Tensor Components |
|
|
54 | (7) |
|
1.5.3.1 Component Transformation Law in Two Dimensions (2D) |
|
|
61 | (4) |
|
1.5.4 Eigenvalue and Eigenvector Problem |
|
|
65 | (2) |
|
1.5.4.1 The Orthogonality of the Eigenvectors |
|
|
67 | (2) |
|
1.5.4.2 Solution of the Cubic Equation |
|
|
69 | (3) |
|
1.5.5 Spectral Representation of Tensors |
|
|
72 | (4) |
|
1.5.6 Cayley-Hamilton Theorem |
|
|
76 | (2) |
|
|
78 | (1) |
|
1.5.8 Isotropic and Anisotropic Tensor |
|
|
79 | (1) |
|
|
80 | (1) |
|
1.5.10 Polar Decomposition |
|
|
81 | (2) |
|
1.5.11 Partial Derivative with Tensors |
|
|
83 | (2) |
|
1.5.11.1 Partial Derivative of Invariants |
|
|
85 | (1) |
|
1.5.11.2 Time Derivative of Tensors |
|
|
86 | (1) |
|
1.5.12 Spherical and Deviatoric Tensors |
|
|
86 | (1) |
|
1.5.12.1 First Invariant of the Deviatoric Tensor |
|
|
87 | (1) |
|
1.5.12.2 Second Invariant of the Deviatoric Tensor |
|
|
87 | (2) |
|
1.5.12.3 Third Invariant of Deviatoric Tensor |
|
|
89 | (2) |
|
1.6 The Tensor-Valued Tensor Function |
|
|
91 | (5) |
|
|
91 | (1) |
|
1.6.2 The Tensor-Valued Isotropic Tensor Function |
|
|
92 | (2) |
|
1.6.3 The Derivative of the Tensor-Valued Tensor Function |
|
|
94 | (2) |
|
|
96 | (9) |
|
1.7.1 The Unit Tensors in Voigt Notation |
|
|
97 | (1) |
|
1.7.2 The Scalar Product in Voigt Notation |
|
|
98 | (1) |
|
1.7.3 The Component Transformation Law in Voigt Notation |
|
|
99 | (1) |
|
1.7.4 Spectral Representation in Voigt Notation |
|
|
100 | (1) |
|
1.7.5 Deviatoric Tensor Components in Voigt Notation |
|
|
101 | (4) |
|
|
105 | (12) |
|
|
106 | (1) |
|
|
106 | (5) |
|
|
111 | (2) |
|
|
113 | (2) |
|
1.8.5 The Conservative Field |
|
|
115 | (2) |
|
1.9 Theorems Involving Integrals |
|
|
117 | (8) |
|
1.9.1 Integration by Parts |
|
|
117 | (1) |
|
1.9.2 The Divergence Theorem |
|
|
117 | (3) |
|
1.9.3 Independence of Path |
|
|
120 | (1) |
|
1.9.4 The Kelvin-Stokes' Theorem |
|
|
121 | (1) |
|
|
122 | (3) |
|
Appendix A A Graphical Representation Of A Second-Order Tensor |
|
|
125 | (534) |
|
A.1 Projecting a Second-order Tensor onto a Particular Direction |
|
|
125 | (5) |
|
A.1.1 Normal and Tangential Components |
|
|
125 | (2) |
|
A.1.2 The Maximum and Minimum Normal Components |
|
|
127 | (1) |
|
A.1.3 The Maximum and Minimum Tangential Component |
|
|
128 | (2) |
|
A.2 Graphical Representation of an Arbitrary Second-order Tensor |
|
|
130 | (8) |
|
A.2.1 Graphical Representation of a Symmetric Second-Order Tensor (Mohr's Circle) |
|
|
134 | (4) |
|
|
138 | (1) |
|
A.4 Graphical Representation of the Spherical and Deviatoric Parts |
|
|
139 | (6) |
|
A.4.1 The Octahedral Vector |
|
|
139 | (6) |
|
|
145 | (100) |
|
|
145 | (1) |
|
2.2 The Continuous medium |
|
|
146 | (5) |
|
|
147 | (1) |
|
2.2.1.1 Rigid Body Motion |
|
|
147 | (2) |
|
2.2.2 Types of Configurations |
|
|
149 | (1) |
|
|
150 | (1) |
|
2.3 Description of Motion |
|
|
151 | (5) |
|
2.3.1 Material and Spatial Coordinates |
|
|
151 | (1) |
|
2.3.2 The Displacement Vector |
|
|
152 | (1) |
|
2.3.3 The Velocity Vector |
|
|
152 | (1) |
|
2.3.4 The Acceleration Vector |
|
|
152 | (1) |
|
2.3.5 Lagrangian and Eulerian Descriptions |
|
|
152 | (1) |
|
2.3.5.1 Lagrangian Description of Motion |
|
|
152 | (1) |
|
2.3.5.2 Eulerian Description of Motion |
|
|
153 | (1) |
|
2.3.5.3 Lagrangian and Eulerian Variables |
|
|
153 | (3) |
|
2.4 The Material Time Derivative |
|
|
156 | (7) |
|
2.4.1 Velocity and Acceleration in Eulerian Description |
|
|
158 | (1) |
|
|
159 | (2) |
|
|
161 | (2) |
|
2.5 The Deformation Gradient |
|
|
163 | (13) |
|
|
163 | (1) |
|
2.5.2 Stretch and Unit Extension |
|
|
163 | (2) |
|
2.5.3 The Material and Spatial Deformation Gradient |
|
|
165 | (3) |
|
2.5.4 Displacement Gradient Tensors (Material and Spatial) |
|
|
168 | (3) |
|
2.5.5 Material Time Derivative of the Deformation Gradient. Material Time Derivative of the Jacobian Determinant |
|
|
171 | (1) |
|
2.5.5.1 Material Time Derivative of F . The Spatial Velocity Gradient |
|
|
171 | (1) |
|
2.5.5.2 Rate-of-Deformation and Spin Tensors |
|
|
172 | (2) |
|
2.5.5.3 The Material Time Derivative of F-1 |
|
|
174 | (1) |
|
2.5.5.4 The Material Time Derivative of the Jacobian Determinant |
|
|
174 | (2) |
|
2.6 Finite Strain Tensors |
|
|
176 | (15) |
|
2.6.1 The Material Finite Strain Tensor |
|
|
177 | (4) |
|
2.6.2 The Spatial Finite Strain Tensor (The Almansi Strain Tensor) |
|
|
181 | (2) |
|
2.6.3 The Material Time Derivative of Strain Tensors |
|
|
183 | (1) |
|
2.6.3.1 The Material Time Derivative of the Right Cauchy-Green Deformation Tensor |
|
|
183 | (1) |
|
2.6.3.2 The Material Time Derivative of the Green-Lagrange Strain Tensor |
|
|
183 | (1) |
|
2.6.3.3 The Material Time Derivative of C-1 |
|
|
184 | (1) |
|
2.6.3.4 Material Time Derivative of the Left Cauchy-Green Deformation Tensor |
|
|
184 | (1) |
|
2.6.3.5 The Material Time Derivative of the Almansi Strain Tensor |
|
|
185 | (1) |
|
2.6.4 Interpreting Deformation/Strain Tensors |
|
|
186 | (1) |
|
2.6.4.1 The Relationship between the Strain and Stretch Tensors |
|
|
187 | (1) |
|
|
188 | (1) |
|
2.6.4.3 The Physical Interpretation of the Deformation/Strain Tensor Components. The Right Stretch Tensor |
|
|
189 | (2) |
|
2.7 Particular Cases of Motion |
|
|
191 | (4) |
|
2.7.1 Homogeneous Deformation |
|
|
191 | (1) |
|
|
192 | (3) |
|
2.8 Polar Decomposition of F |
|
|
195 | (20) |
|
2.8.1 Spectral Representation of Kinematic Tensors |
|
|
197 | (6) |
|
2.8.2 Evolution of the Polar Decomposition |
|
|
203 | (5) |
|
2.8.2.1 The Alternative Way to Express the Rate of Kinematic Tensors |
|
|
208 | (7) |
|
2.9 Area and Volume Elements Deformation |
|
|
215 | (5) |
|
2.9.1 Area Element Deformation |
|
|
215 | (2) |
|
2.9.1.1 The Material Time Derivative of the Area Element |
|
|
217 | (1) |
|
2.9.2 The Volume Element Deformation |
|
|
218 | (1) |
|
2.9.2.1 The Material Time Derivative of the Volume Element |
|
|
219 | (1) |
|
|
220 | (1) |
|
2.9.2.3 Isochoric Motion. Incompressibility |
|
|
220 | (1) |
|
2.10 Material and Control Domains |
|
|
220 | (2) |
|
2.10.1 The Material Domain |
|
|
220 | (1) |
|
2.10.2 The Control Domain |
|
|
221 | (1) |
|
|
222 | (2) |
|
2.12 Circulation and Vorticity |
|
|
224 | (1) |
|
2.13 Motion Decomposition: Volumetric and Isochoric Motions |
|
|
225 | (3) |
|
2.13.1 The Principal Invariants |
|
|
227 | (1) |
|
2.14 The Small Deformation Regime |
|
|
228 | (11) |
|
|
228 | (1) |
|
2.14.2 Infinitesimal Strain and Spin Tensors |
|
|
229 | (2) |
|
2.14.3 Stretch and Unit Extension |
|
|
231 | (1) |
|
|
232 | (1) |
|
2.14.5 The Physical Interpretation of the Infinitesimal Strain Tensor |
|
|
232 | (1) |
|
2.14.5.1 Engineering Strain |
|
|
233 | (2) |
|
2.14.6 The Volume Ratio (Dilatation) |
|
|
235 | (1) |
|
|
236 | (3) |
|
2.15 Other Ways to Define Strain |
|
|
239 | (6) |
|
|
239 | (2) |
|
2.15.2 The Logarithmic Strain Tensor |
|
|
241 | (1) |
|
2.15.3 The Biot Strain Tensor |
|
|
242 | (1) |
|
2.15.4 Unifying the Strain Tensors |
|
|
242 | (1) |
|
2.15.5 One Dimensional Measurements of Strain (1D) |
|
|
243 | (1) |
|
2.15.5.1 Cauchy's strain or Engineering strain or the Linear strain |
|
|
243 | (1) |
|
2.15.5.2 The Logarithmic or True strain |
|
|
243 | (1) |
|
2.15.5.3 The Green-Lagrange strain |
|
|
243 | (1) |
|
2.15.5.4 The Almansi strain |
|
|
243 | (1) |
|
2.15.5.5 The Swaiger strain |
|
|
244 | (1) |
|
|
244 | (1) |
|
|
245 | (24) |
|
|
245 | (1) |
|
|
245 | (2) |
|
3.2.1 Surface Forces (Traction) |
|
|
245 | (1) |
|
3.2.2 Gravitational Force (Body Force) |
|
|
246 | (1) |
|
|
247 | (22) |
|
3.3.1 The Cauchy Stress Tensor |
|
|
248 | (1) |
|
3.3.1.1 The Traction Vector |
|
|
248 | (1) |
|
3.3.1.2 Cauchy's Fundamental Postulate |
|
|
248 | (4) |
|
3.3.2 The Relationship between the Traction and the Cauchy Stress Tensor |
|
|
252 | (8) |
|
3.3.3 Other Measures of Stress |
|
|
260 | (1) |
|
3.3.3.1 The First Piola-Kirchhoff Stress Tensor |
|
|
260 | (2) |
|
3.3.3.2 The Kirchhoff Stress Tensor |
|
|
262 | (1) |
|
3.3.3.3 The Second Piola-Kirchhoff Stress Tensor |
|
|
262 | (2) |
|
3.3.3.4 The Biot Stress Tensor |
|
|
264 | (1) |
|
3.3.3.5 The Mandel Stress Tensor |
|
|
264 | (1) |
|
3.3.4 Spectral Representation of the Stress Tensors |
|
|
265 | (4) |
|
|
269 | (16) |
|
|
269 | (1) |
|
4.2 The Objectivity Of Tensors |
|
|
270 | (7) |
|
4.2.1 The Deformation Gradient |
|
|
272 | (1) |
|
|
273 | (2) |
|
|
275 | (2) |
|
|
277 | (8) |
|
|
278 | (1) |
|
4.3.1.1 The Convective Rate |
|
|
279 | (1) |
|
|
279 | (1) |
|
4.3.1.3 The Cotter-Rivlin Rate |
|
|
280 | (1) |
|
4.3.1.4 The Jaumann-Zaremba Rate |
|
|
280 | (2) |
|
4.3.1.5 The Green-Naghdi Rate (Polar Rate) |
|
|
282 | (1) |
|
4.3.2 The Objective Rate of Stress Tensors |
|
|
282 | (3) |
|
5 The Fundamental Equations Of Continuum Mechanics |
|
|
285 | (56) |
|
|
285 | (1) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
286 | (1) |
|
5.4 The: Reynolds Transport Theorem |
|
|
287 | (4) |
|
5.4.1 Reynolds' Transport Theorem for Volumes with Discontinuities |
|
|
288 | (3) |
|
|
291 | (1) |
|
5.6 The Principle of Conservation of Mass. The Mass Continuity Equation |
|
|
291 | (6) |
|
5.6.1 The Mass Continuity Equation in Lagrangian Description |
|
|
293 | (2) |
|
|
295 | (1) |
|
5.6.3 The Mass Continuity Equation for Volume with Discontinuities |
|
|
295 | (2) |
|
5.7 The Principle of Conservation of Linear Momentum. The Equations of Motion |
|
|
297 | (5) |
|
|
297 | (1) |
|
5.7.2 The Principle of Conservation of Linear Momentum |
|
|
297 | (1) |
|
5.7.2.1 The Equilibrium Equations |
|
|
298 | (3) |
|
5.7.3 The Equations of Motion with Discontinuities |
|
|
301 | (1) |
|
5.8 The Principle of Conservation of Angular Momentum. Symmetry of the Cauchy Stress Tensor |
|
|
302 | (5) |
|
|
302 | (1) |
|
5.8.2 The Principle of Conservation of Angular Momentum |
|
|
303 | (4) |
|
5.9 The Principle of Conservation of Energy. The Energy Equation |
|
|
307 | (11) |
|
|
307 | (1) |
|
5.9.2 External and Internal Mechanical Power |
|
|
307 | (3) |
|
5.9.3 The Balance of Mechanical Energy |
|
|
310 | (2) |
|
5.9.4 The Internal Energy |
|
|
312 | (1) |
|
|
313 | (1) |
|
5.9.6 The First Law of Thermodynamics. The Energy Equation |
|
|
314 | (1) |
|
5.9.6.1 The Energy Equation in Lagrangian Description |
|
|
315 | (1) |
|
5.9.7 The Energy Equation with Discontinuity |
|
|
316 | (2) |
|
5.10 The Principle of Irreversibility. Entropy Inequality |
|
|
318 | (8) |
|
5.10.1 The Second Law of Thermodynamics |
|
|
318 | (2) |
|
5.10.2 The Clausius-Duhem Inequality |
|
|
320 | (1) |
|
5.10.3 The Clausius-Planck Inequality |
|
|
321 | (1) |
|
5.10.4 The Alternative Form to Express the Clausius-Duhem Inequality |
|
|
321 | (2) |
|
5.10.5 The Alternative Form of the Clausius-Planck Inequality |
|
|
323 | (1) |
|
5.10.6 Reversible Process |
|
|
323 | (1) |
|
5.10.7 Entropy Inequality for a Domain with Discontinuity |
|
|
324 | (2) |
|
5.11 Fundamental Equations of Continuum Mechanics |
|
|
326 | (2) |
|
|
327 | (1) |
|
5.11.1.1 Rigid Body Motion |
|
|
327 | (1) |
|
|
327 | (1) |
|
|
328 | (6) |
|
|
328 | (1) |
|
5.12.1.1 Thermal Conduction |
|
|
328 | (2) |
|
5.12.1.2 Thermal Convection Transfer |
|
|
330 | (1) |
|
5.12.1.3 Thermal Radiation |
|
|
330 | (1) |
|
5.12.1.4 The Heat Flux Equation |
|
|
330 | (4) |
|
5.13 Fluid Flow in Porous Media (Filtration) |
|
|
334 | (1) |
|
5.14 The Convection-Diffusion Equation |
|
|
335 | (3) |
|
5.14.1 The Generalization of the Flux Problem |
|
|
338 | (1) |
|
5.15 Initial Boundary Value Problem (IBVP) and Computational Mechanics |
|
|
338 | (3) |
|
6 Introduction To Constitutive Equations |
|
|
341 | (34) |
|
|
341 | (2) |
|
6.2 The Constitutive Principles |
|
|
343 | (2) |
|
6.2.1 The Principle of Determinism |
|
|
344 | (1) |
|
6.2.2 The Principle of Local Action |
|
|
344 | (1) |
|
6.2.3 The Principle of Equipresence |
|
|
344 | (1) |
|
6.2.4 The Principle of Objectivity |
|
|
344 | (1) |
|
6.2.5 The Principle of Dissipation |
|
|
344 | (1) |
|
6.3 Characterization of Constitutive Equations for Simple Thermoelastic Materials |
|
|
345 | (6) |
|
6.4 Characterization of the Constitutive Equations for a Thermoviscoelastic Material |
|
|
351 | (9) |
|
6.4.1 Constitutive Equations with Internal Variables |
|
|
355 | (5) |
|
6.5 Some Experimental Evidence |
|
|
360 | (15) |
|
|
360 | (2) |
|
6.5.1.1 Temperature Effect |
|
|
362 | (1) |
|
6.5.1.2 Some Mechanical Properties of Solids |
|
|
362 | (7) |
|
|
369 | (1) |
|
|
370 | (1) |
|
6.5.3 Behavior of Viscoelastic Materials |
|
|
371 | (1) |
|
|
372 | (3) |
|
|
375 | (48) |
|
|
375 | (1) |
|
7.2 Initial Boundary Value Problem of Linear Elasticity |
|
|
376 | (1) |
|
7.2.1 Governing Equations |
|
|
376 | (1) |
|
7.2.2 Initial and Boundary Conditions |
|
|
377 | (1) |
|
7.3 Generalized Hooke's Law |
|
|
377 | (4) |
|
7.3.1 The Generalized Hooke's Law in Voigt Notation |
|
|
378 | (1) |
|
7.3.2 The Component Transformation Law for the Generalized Hooke's Law |
|
|
379 | (1) |
|
7.3.2.1 The Matrix Transformation for Stress and Strain Components |
|
|
380 | (1) |
|
7.3.2.2 The Transformation Matrix of the Elasticity Tensor Components |
|
|
381 | (1) |
|
7.4 The Elasticity Tensor |
|
|
381 | (11) |
|
7.4.1 Anisotropy and Isotropy |
|
|
381 | (1) |
|
7.4.2 Types of Elasticity Tensor Symmetry |
|
|
382 | (1) |
|
7.4.2.1 Triclinic Materials |
|
|
382 | (1) |
|
7.4.2.2 Monoclinic Symmetry (One Plane of Symmetry) |
|
|
383 | (1) |
|
7.4.2.3 Orthotropic Symmetry (Two Planes of Symmetry) |
|
|
384 | (1) |
|
7.4.2.4 Tetragonal Symmetry |
|
|
384 | (2) |
|
7.4.2.5 Transversely Isotropic Symmetry (Hexagonal Symmetry) |
|
|
386 | (2) |
|
|
388 | (2) |
|
7.4.2.7 Symmetry in All Directions (Isotropy) |
|
|
390 | (2) |
|
|
392 | (7) |
|
7.5.1 Constitutive Equations |
|
|
392 | (1) |
|
7.5.2 Experimental Determination of Elastic Constants |
|
|
393 | (1) |
|
7.5.2.1 Young's Modulus and Poisson's Ratio |
|
|
393 | (1) |
|
7.5.2.2 The Shear and Bulk Moduli |
|
|
394 | (4) |
|
7.5.3 Restrictions on Elastic Mechanical Properties |
|
|
398 | (1) |
|
7.6 Strain Energy Density |
|
|
399 | (5) |
|
7.6.1 Decoupling Strain Energy Density |
|
|
402 | (2) |
|
7.7 The Constitutive Law for Orthotropic Material |
|
|
404 | (1) |
|
7.8 Transversely Isotropic Materials |
|
|
405 | (1) |
|
7.9 The saint-Venant's and Superposition Principles |
|
|
406 | (2) |
|
7.10 Initial Stress/Strain |
|
|
408 | (2) |
|
7.10.1 Thermal Deformation |
|
|
408 | (2) |
|
7.11 The Navier-Lame Equations |
|
|
410 | (1) |
|
7.12 Two-Dimensional Elasticity |
|
|
410 | (8) |
|
7.12.1 The State of Plane Stress |
|
|
411 | (1) |
|
7.12.1.1 The Initial Strain |
|
|
412 | (1) |
|
7.12.2 The State of Plane Strain |
|
|
413 | (2) |
|
|
415 | (2) |
|
7.12.3 Axisymmetric Solids |
|
|
417 | (1) |
|
7.13 The Unidimensional Approach |
|
|
418 | (5) |
|
7.13.1 Beam Structural Elements |
|
|
418 | (2) |
|
7.13.1.1 The Internal Normal Force and the Bending Moments |
|
|
420 | (1) |
|
7.13.1.2 The Shear Forces and the Torsional Moment |
|
|
421 | (1) |
|
7.13.1.3 The Strain Energy |
|
|
422 | (1) |
|
|
423 | (42) |
|
|
423 | (1) |
|
8.2 Constitutive Equations |
|
|
424 | (8) |
|
8.2.1 Elastic Tangent Stiffness Tensors |
|
|
427 | (1) |
|
8.2.1.1 The Material Elastic Tangent Stiffness Tensor |
|
|
427 | (1) |
|
8.2.1.2 The Spatial Elastic Tangent Stiffness Tensor |
|
|
428 | (2) |
|
8.2.1.3 The Instantaneous Elastic Tangent Stiffness Tensor |
|
|
430 | (1) |
|
8.2.1.4 The Elastic Tangent Stiffness Pseudo-Tensor |
|
|
431 | (1) |
|
8.3 Isotropic Hyperelastic Materials |
|
|
432 | (8) |
|
8.3.1 The Constitutive Equation in terms of Invariants |
|
|
434 | (1) |
|
8.3.1.1 The Constitutive Equation in terms |
|
|
434 | (2) |
|
8.3.1.2 The Constitutive Equation in terms of |
|
|
436 | (1) |
|
8.3.2 Series Expansion of the Energy Function |
|
|
436 | (1) |
|
8.3.3 Constitutive Equations in terms of the Principal Stretches |
|
|
437 | (3) |
|
8.4 Compressible Materials |
|
|
440 | (7) |
|
|
442 | (3) |
|
8.4.2 Compressible Isotropic Materials |
|
|
445 | (1) |
|
8.4.2.1 Compressible Isotropic Material in terms of the Invariants |
|
|
446 | (1) |
|
8.5 Incompressible Materials |
|
|
447 | (4) |
|
8.5.1 Geometrical Interpretation |
|
|
449 | (1) |
|
8.5.2 Isotropic Incompressible Hyperelastic Materials |
|
|
450 | (1) |
|
8.5.2.1 Series Expansion of the Energy Function for an Isotropic Incompressible Hyperelastic Materials |
|
|
451 | (1) |
|
8.6 Examples of Hyperelastic Models |
|
|
451 | (11) |
|
8.6.1 The Neo-Hookean Material Model |
|
|
452 | (1) |
|
8.6.2 The Ogden Material Model |
|
|
452 | (1) |
|
8.6.2.1 The Incompressible Ogden Material Model |
|
|
452 | (1) |
|
8.6.2.2 The Hadamard Material Model |
|
|
453 | (1) |
|
8.6.3 The Mooney-Rivlin Material Model |
|
|
453 | (1) |
|
8.6.3.1 Strain Energy Density |
|
|
453 | (1) |
|
8.6.3.2 The Stress Tensor |
|
|
454 | (1) |
|
8.6.4 The Yeoh Material Model |
|
|
454 | (1) |
|
8.6.4.1 Strain Energy Density |
|
|
454 | (1) |
|
8.6.4.2 The Stress Tensor |
|
|
454 | (1) |
|
8.6.5 The Arruda-Boyce Material Model |
|
|
454 | (1) |
|
8.6.6 The Blatz-Ko Hvperelastic Model |
|
|
455 | (1) |
|
8.6.7 The Saint Venant-Kirchhoff Model |
|
|
455 | (1) |
|
8.6.7.1 Strain Energy Density |
|
|
455 | (1) |
|
8.6.7.2 The Stress Tensor |
|
|
456 | (1) |
|
8.6.7.3 The Elastic Tangent Stiffness Tensor |
|
|
456 | (1) |
|
8.6.8 The Compressible Neo-Hookean Material Model |
|
|
457 | (1) |
|
8.6.8.1 Strain Energy Density |
|
|
457 | (1) |
|
8.6.8.2 The Stress Tensor |
|
|
457 | (1) |
|
8.6.8.3 The Elastic Tangent Stiffness Tensor |
|
|
458 | (2) |
|
|
460 | (1) |
|
8.6.10 The Statistical Model |
|
|
460 | (1) |
|
8.6.11 The Eight-Parameter Model |
|
|
461 | (1) |
|
8.7 Anisotropic Hyperelasticity |
|
|
462 | (3) |
|
8.7.1 Transversely Isotropic Material |
|
|
463 | (2) |
|
|
465 | (82) |
|
|
465 | (2) |
|
|
467 | (24) |
|
9.2.1 The Yield Surface for Anisotropic Materials |
|
|
468 | (1) |
|
9.2.1.1 The Yield Surface Gradient |
|
|
468 | (1) |
|
9.2.2 The Yield Surface for Isotropic Materials |
|
|
468 | (3) |
|
9.2.3 The Yield Surface for Materials Independent of Pressure |
|
|
471 | (1) |
|
9.2.3.1 The von Mises Yield Criterion |
|
|
471 | (4) |
|
9.2.3.2 The Tresca Yield Criterion |
|
|
475 | (2) |
|
9.2.4 The Yield Criteria for Pressure-Dependent Materials |
|
|
477 | (1) |
|
9.2.4.1 The Mohr-Coulomb Criterion |
|
|
478 | (4) |
|
9.2.4.2 The Drucker-Prager Yield Criterion |
|
|
482 | (4) |
|
9.2.4.3 The Rankine Yield Criterion |
|
|
486 | (3) |
|
9.2.5 Evolution of the Yield Surface |
|
|
489 | (2) |
|
9.3 Plasticity Models in Small Deformation Regime (Uniaxial Cases) |
|
|
491 | (12) |
|
9.3.1 Rate-Independent Plasticity Models (Uniaxial Case) |
|
|
491 | (1) |
|
9.3.1.1 Perfect Elastoplastic Behavior |
|
|
491 | (4) |
|
9.3.1.2 Isotropic Hardening Elastoplastic Behavior |
|
|
495 | (5) |
|
9.3.1.3 Kinematic Hardening Elastoplastic Behavior |
|
|
500 | (2) |
|
9.3.1.4 Isotropic-Kinematic Elastoplastic Behavior |
|
|
502 | (1) |
|
9.4 Plasticity in Small Deformation Regime (The Classical Plasticity Theory) |
|
|
503 | (12) |
|
9.4.1 The Infinitesimal Strain Tensor and Constitutive Equation |
|
|
504 | (1) |
|
9.4.2 Helmholtz Free Energy |
|
|
505 | (1) |
|
9.4.3 Internal Energy Dissipation and the Evolution of the Internal Variables |
|
|
505 | (2) |
|
9.4.4 The Elastoplastic Tangent Stiffness Tensor |
|
|
507 | (5) |
|
9.4.5 The Classical Flow Theory |
|
|
512 | (1) |
|
9.4.5.1 Perfect Plasticity |
|
|
512 | (1) |
|
9.4.5.2 Isotropic-Kinematic Hardening Plasticity |
|
|
513 | (2) |
|
9.5 Plastic Potential Theory |
|
|
515 | (3) |
|
9.6 Plasticity in Large Deformation Regime |
|
|
518 | (1) |
|
9.7 Large-Deformation Plasticity Based on the Multiplicative Decomposition of the Deformation Gradient |
|
|
518 | (29) |
|
|
518 | (2) |
|
9.7.1.1 Deformation and Strain Tensors |
|
|
520 | (4) |
|
9.7.1.2 Area and Volume Elements Deformation |
|
|
524 | (1) |
|
9.7.1.3 The Spatial Velocity Gradient |
|
|
525 | (3) |
|
|
528 | (1) |
|
9.7.1.5 The Cotter-Rivlin Rate |
|
|
529 | (2) |
|
|
531 | (1) |
|
9.7.2.1 Stress Tensor Rates |
|
|
532 | (1) |
|
9.7.3 The Helmholtz Free Energy |
|
|
533 | (1) |
|
9.7.3.1 Decoupling the Helmholtz Free Energy |
|
|
533 | (1) |
|
9.7.3.2 The Objectivity Principle for the Helmholtz Free Energy |
|
|
533 | (1) |
|
9.7.3.3 The Isotropic Helmholtz Free Energy |
|
|
534 | (1) |
|
9.7.3.4 The Rate of Change of the Isotropic Helmholtz Free Energy |
|
|
534 | (2) |
|
9.7.4 The Plastic Potential and the Yield Criterion |
|
|
536 | (1) |
|
9.7.5 The Dissipation and the Constitutive Equation |
|
|
537 | (1) |
|
9.7.6 Evolution of the Internal Variables |
|
|
538 | (1) |
|
9.7.7 The Elastoplastic Tangent Stiffness Tensors |
|
|
539 | (1) |
|
9.7.7.1 The Elastoplastic Tangent Stiffness Tensor |
|
|
540 | (2) |
|
9.7.8 The Hyperelastoplastic Model with von Mises Yield Criterion |
|
|
542 | (1) |
|
9.7.8.1 The Helmholtz Free Energy |
|
|
542 | (1) |
|
9.7.8.2 The Stress Tensor |
|
|
543 | (1) |
|
9.7.8.3 Formulation Considering the Transformation as an Isochoric Transformation |
|
|
544 | (1) |
|
9.7.8.4 The Rate of Change of the Helmholtz Free Energy |
|
|
545 | (1) |
|
9.7.8.5 Yield Criterion and Evolution of the Internal Variables |
|
|
546 | (1) |
|
|
547 | (40) |
|
10.1 Thermodynamic Potentials |
|
|
547 | (5) |
|
10.1.1 The Specific Internal Energy |
|
|
548 | (1) |
|
10.1.2 The Specific Helmholtz Free Energy |
|
|
548 | (1) |
|
10.1.3 The Specific Gibbs Free Energy |
|
|
549 | (1) |
|
10.1.4 The Specific Enthalpy |
|
|
550 | (2) |
|
10.2 Thermomechanical Parameters |
|
|
552 | (4) |
|
10.2.1 Isothermal and Isentropic Processes |
|
|
552 | (1) |
|
10.2.2 Specific Heats and Latent Heat Tensors |
|
|
553 | (3) |
|
10.3 Linear Thermoelasticity |
|
|
556 | (9) |
|
10.3.1 Linearization of the Constitutive Equations |
|
|
556 | (1) |
|
10.3.1.1 The Linearized Piola-Kirchhoff Stress Tensor |
|
|
557 | (1) |
|
10.3.1.2 The Linearized Heat Flux Vector |
|
|
558 | (2) |
|
10.3.1.3 Linearized Entropy |
|
|
560 | (1) |
|
10.3.1.4 The Helmholtz Free Energy Approach |
|
|
560 | (1) |
|
10.3.1.5 Linearization of the Constitutive Equations |
|
|
561 | (1) |
|
10.3.1.6 Linear Thermoelasticity in a Small Deformation Regime |
|
|
561 | (1) |
|
10.3.1.7 Linear Thermoelasticity in a Small Deformation Regime |
|
|
562 | (3) |
|
10.4 The Decoupled Thermo-Mechanical Problem in a Small Deformation Regime |
|
|
565 | (4) |
|
10.4.1 The Purely Thermal Problem |
|
|
567 | (1) |
|
10.4.2 The Purely Mechanical Problem |
|
|
568 | (1) |
|
10.5 The Classical theory of Thermoelasticity in Finite Strain (Large Deformation Regime) |
|
|
569 | (4) |
|
10.5.1 The Coupled Heat Flux Equation |
|
|
570 | (2) |
|
10.5.2 The Specific Helmholtz Free Energy |
|
|
572 | (1) |
|
10.6 Thermoelasticity based on the Multiplicative Decomposition of the Deformation Gradient |
|
|
573 | (10) |
|
|
574 | (2) |
|
|
576 | (1) |
|
10.6.3 Area and Volume Elements |
|
|
576 | (2) |
|
10.6.4 Isotropic Materials |
|
|
578 | (1) |
|
10.6.5 The Constitutive Equations |
|
|
579 | (1) |
|
10.6.5.1 The Constitutive Equation for Energy |
|
|
579 | (1) |
|
10.6.5.2 The Constitutive Equations for Stress |
|
|
580 | (2) |
|
10.6.5.3 The Constitutive Equation for Entropy |
|
|
582 | (1) |
|
10.7 Thermoplasticity in a Small Deformation Regime |
|
|
583 | (4) |
|
10.7.1 The Specific Helmholtz Free Energy |
|
|
583 | (1) |
|
10.7.2 Internal Energy Dissipation |
|
|
584 | (3) |
|
|
587 | (48) |
|
|
587 | (1) |
|
11.2 The Isotropic Damage Model in a Small Deformation Regime |
|
|
588 | (17) |
|
11.2.1 Description of the Isotropic Damage Model in Uniaxial Cases |
|
|
588 | (1) |
|
11.2.1.1 The Constitutive Equation |
|
|
589 | (1) |
|
11.2.2 The Three-Dimensional Isotropic Damage Model |
|
|
590 | (1) |
|
11.2.2.1 Helmholtz Free Energy |
|
|
590 | (1) |
|
11.2.2.2 Internal Energy Dissipation and the Constitutive Equations |
|
|
591 | (2) |
|
11.2.2.3 "Ingredients" of the Damage Model |
|
|
593 | (6) |
|
11.2.2.4 The Hardening/Softening Law |
|
|
599 | (2) |
|
11.2.3 The Elastic-Damage Tangent Stiffness Tensor |
|
|
601 | (1) |
|
|
602 | (1) |
|
11.2.4.1 The Symmetrical Damage Model (Tension-Compression) -- Model I |
|
|
602 | (1) |
|
11.2.4.2 The Tension-Only Damage Model -- Model II |
|
|
603 | (1) |
|
11.2.4.3 The Non-Symmetrical Damage Model -- Model III |
|
|
604 | (1) |
|
11.3 The Generalized Isotropic Damage Model |
|
|
605 | (4) |
|
11.3.1 The Strain Energy Function |
|
|
606 | (1) |
|
11.3.2 Spherical and Deviatoric Effective Stress |
|
|
607 | (1) |
|
11.3.3 Thermodynamic Considerations |
|
|
607 | (1) |
|
11.3.4 The Elastic-Damage Tangent Stiffness Tensor |
|
|
608 | (1) |
|
11.4 The Elastoplastic-Damage Model in a Small Deformation Regime |
|
|
609 | (6) |
|
11.4.1 The Elasto-Plastic Damage Model by Simo & Ju (1987) in a Small Deformation Regime |
|
|
610 | (1) |
|
11.4.1.1 Helmholtz Free Energy |
|
|
610 | (1) |
|
11.4.1.2 Internal Energy Dissipation. Constitutive Equations. Thermodynamic Considerations |
|
|
611 | (1) |
|
11.4.1.3 Damage Characterization |
|
|
612 | (1) |
|
11.4.1.4 The Elastic-Damage Tangent Stiffness Tensor |
|
|
612 | (1) |
|
11.4.1.5 Characterization of the Plastic Response. The Elastoplastic-Damage Tangent Stiffness Tensor |
|
|
613 | (2) |
|
11.5 The Tensile-Compressive Plastic-Damage Model |
|
|
615 | (6) |
|
11.5.1 Helmholtz Free Energy |
|
|
616 | (1) |
|
11.5.2 Damage Characterization |
|
|
617 | (1) |
|
11.5.3 Evolution of the Damage Parameters |
|
|
618 | (1) |
|
11.5.4 Evolution of the Plastic Strain Tensor |
|
|
619 | (1) |
|
11.5.5 Internal Energy Dissipation |
|
|
619 | (2) |
|
11.6 Damage in a Large Deformation Regime |
|
|
621 | (14) |
|
11.6.1 Gurtin & Francis' One-Dimensional Model |
|
|
622 | (1) |
|
11.6.2 The Rate Independent 3D Elastic-Damage Model |
|
|
622 | (1) |
|
11.6.3 The Damage Variable. Damage Evolution |
|
|
623 | (1) |
|
11.6.4 The Plastic-Damage Model by Simo & Ju (1989) |
|
|
624 | (1) |
|
11.6.4.1 Specific Helmholtz Free Energy |
|
|
624 | (1) |
|
11.6.4.2 Internal Energy Dissipation. Constitutive Equations. Thermodynamic Considerations |
|
|
624 | (2) |
|
11.6.4.3 Damage Characterization |
|
|
626 | (1) |
|
11.6.4.4 The Hyperelastic-Damage Tangent Stiffness Tensor |
|
|
626 | (1) |
|
11.6.4.5 Characterization of the Plastic Response. The Effective Elastoplastic - Damage Tangent Stiffness Tensor |
|
|
627 | (1) |
|
11.6.4.6 The Elastoplastic-Damage Tangent Stiffness Tensor |
|
|
628 | (1) |
|
11.6.5 The Plastic-Damage Model by Ju(1989) |
|
|
628 | (1) |
|
11.6.5.1 Helmholtz Free Energy |
|
|
629 | (1) |
|
11.6.5.2 Internal Energy Dissipation. Constitutive Equation. Thermodynamic Considerations |
|
|
629 | (1) |
|
11.6.5.3 Characterization of Damage. The Tangent Damage Hyperelasticity Tensor |
|
|
630 | (1) |
|
11.6.5.4 The Elastic-Damage Tangent Stiffness Tensor |
|
|
630 | (1) |
|
11.6.5.5 Characterization of Plastic Response. The elastoplastic Tangent Stiffness Tensor |
|
|
631 | (1) |
|
11.6.5.6 The Elastoplastic-Damage Tangent Stiffness Tensor |
|
|
632 | (3) |
|
12 Introduction To Fluids |
|
|
635 | (24) |
|
|
635 | (1) |
|
12.2 Fluids at Rest and in Motion |
|
|
636 | (1) |
|
|
636 | (1) |
|
|
637 | (1) |
|
12.3 Viscous and Non-Viscous Fluids |
|
|
637 | (2) |
|
12.3.1 Non-Viscous Fluids (Perfect Fluids) |
|
|
638 | (1) |
|
|
638 | (1) |
|
12.4 Laminar Turbulent Flow |
|
|
639 | (1) |
|
|
640 | (2) |
|
12.5.1 Incompressible Fluids |
|
|
640 | (1) |
|
|
641 | (1) |
|
|
641 | (1) |
|
|
642 | (3) |
|
12.6.1 The Stokes' Condition |
|
|
645 | (1) |
|
12.7 Stress, Dissipated and Recoverable Powers |
|
|
645 | (2) |
|
12.8 The Fundamental Equations for Newtonian Fluids |
|
|
647 | (12) |
|
12.8.1 The Navier-Stokes-Duhem Equations of Motion |
|
|
648 | (1) |
|
12.8.1.1 Alternative Form of the Fundamental Equations for Newtonian Fluids |
|
|
648 | (1) |
|
12.8.1.2 The Fundamental Equations for Incompressible Newtonian Fluid |
|
|
649 | (1) |
|
12.8.2 The Navier-Stokes Equations of Motion |
|
|
650 | (1) |
|
12.8.3 The Euler Equations of Motion |
|
|
650 | (1) |
|
12.8.3.1 Non Viscous and Incompressible Fluids |
|
|
651 | (1) |
|
12.8.3.2 Bernoulli's Equation |
|
|
652 | (1) |
|
12.8.4 The Equation of Vorticity |
|
|
653 | (6) |
Bibliography |
|
659 | (8) |
Index |
|
667 | |