Preface |
|
ix | |
|
|
1 | (11) |
|
|
1 | (6) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
8 | (4) |
|
|
12 | (17) |
|
|
12 | (4) |
|
|
16 | (4) |
|
2.3 Variation and generalisation |
|
|
20 | (1) |
|
2.4 Relation with analysis |
|
|
21 | (2) |
|
2.5 Exponential, logarithmic and binomial series |
|
|
23 | (2) |
|
|
25 | (4) |
|
3 Subsets, partitions and permutations |
|
|
29 | (35) |
|
|
29 | (8) |
|
|
37 | (5) |
|
|
42 | (5) |
|
|
47 | (1) |
|
3.5 More on formal power series |
|
|
48 | (2) |
|
|
50 | (4) |
|
3.7 Appendix: Exponential and logarithm |
|
|
54 | (2) |
|
|
56 | (8) |
|
|
64 | (42) |
|
4.1 Linear recurrences with constant coefficients |
|
|
65 | (12) |
|
4.2 Linear recurrence relations with polynomial coefficients |
|
|
77 | (6) |
|
4.3 Some non-linear recurrence relations |
|
|
83 | (2) |
|
4.4 Appendix: Euler's Pentagonal Numbers Theorem |
|
|
85 | (4) |
|
4.5 Appendix: Some Catalan objects |
|
|
89 | (8) |
|
4.6 Appendix: The RSK algorithm |
|
|
97 | (2) |
|
4.7 Appendix: Some inverse semigroups |
|
|
99 | (2) |
|
|
101 | (5) |
|
|
106 | (8) |
|
|
106 | (1) |
|
|
107 | (1) |
|
5.3 The van der Waerden conjecture |
|
|
108 | (2) |
|
|
110 | (3) |
|
|
113 | (1) |
|
|
113 | (1) |
|
|
114 | (17) |
|
|
114 | (2) |
|
|
116 | (2) |
|
6.3 The q-Binomial Theorem |
|
|
118 | (1) |
|
6.4 Elementary symmetric functions |
|
|
119 | (2) |
|
6.5 Partitions and permutations |
|
|
121 | (1) |
|
6.6 Irreducible polynomials |
|
|
122 | (2) |
|
|
124 | (1) |
|
|
125 | (6) |
|
7 Group actions and the cycle Index |
|
|
131 | (10) |
|
|
131 | (2) |
|
7.2 The Orbit-counting Lemma |
|
|
133 | (2) |
|
|
135 | (2) |
|
7.4 Labelled and unlabelled |
|
|
137 | (2) |
|
|
139 | (2) |
|
|
141 | (15) |
|
8.1 The Principle of Inclusion and Exclusion |
|
|
141 | (3) |
|
8.2 Partially ordered sets |
|
|
144 | (2) |
|
8.3 The incidence algebra of a poset |
|
|
146 | (1) |
|
8.4 Some Mobius functions |
|
|
147 | (2) |
|
8.5 Classical Mobius inversion |
|
|
149 | (2) |
|
8.6 The general linear group |
|
|
151 | (1) |
|
|
152 | (4) |
|
|
156 | (14) |
|
9.1 The chromatic polynomial |
|
|
156 | (3) |
|
|
159 | (2) |
|
9.3 Orbit counting and the Tutte polynomial |
|
|
161 | (5) |
|
9.4 The Matrix-Tree Theorem |
|
|
166 | (2) |
|
|
168 | (2) |
|
|
170 | (17) |
|
|
170 | (1) |
|
10.2 Species and counting |
|
|
171 | (2) |
|
|
173 | (1) |
|
10.4 Operations on species |
|
|
174 | (2) |
|
10.5 Cayley's Theorem revisited |
|
|
176 | (1) |
|
|
177 | (1) |
|
10.7 Oligomorphic permutation groups |
|
|
178 | (3) |
|
|
181 | (2) |
|
|
183 | (4) |
|
11 Analytic methods: a first look |
|
|
187 | (8) |
|
11.1 The language of asymptotics |
|
|
187 | (1) |
|
|
188 | (2) |
|
|
190 | (2) |
|
11.4 Subadditive and submultiplicative functions |
|
|
192 | (2) |
|
|
194 | (1) |
|
|
195 | (17) |
|
|
195 | (5) |
|
|
200 | (4) |
|
12.3 The Euler--Maclaurin sum formula |
|
|
204 | (1) |
|
12.4 Poly-Bernoulli numbers |
|
|
205 | (2) |
|
|
207 | (1) |
|
12.6 Theorems of Meir and Moon and of Bender |
|
|
208 | (2) |
|
|
210 | (2) |
|
13 Bibliography and further directions |
|
|
212 | (5) |
|
13.1 The On-line Encyclopedia of Integer Sequences |
|
|
212 | (1) |
|
13.2 Books on combinatorial enumeration |
|
|
213 | (2) |
|
13.3 Papers cited in the text |
|
|
215 | (2) |
Index |
|
217 | |