Muutke küpsiste eelistusi

E-raamat: Nuclear Systems Volume II: Elements of Thermal Hydraulic Design

(Massachusetts Institute of Technology, USA), (Massachusetts Institute of Technology, Cambridge, USA), (University of Maryland, USA)
  • Formaat: 657 pages
  • Ilmumisaeg: 13-Dec-2021
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781482239614
  • Formaat - EPUB+DRM
  • Hind: 149,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 657 pages
  • Ilmumisaeg: 13-Dec-2021
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781482239614

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides advanced coverage of a wide variety of thermal fluid systems and technologies in nuclear power plants, including discussions of the latest reactor designs and their thermal/fluid technologies. Beyond the thermal hydraulic design and analysis of the core of a nuclear reactor, the book covers other components of nuclear power plants, such as the pressurizer, containment, and the entire primary coolant system.

Placing more emphasis on the appropriate models for small-scale resolution of the velocity and temperature fields through computational fluid mechanics, the book shows how this enhances the accuracy of predicted operating conditions in nuclear plants. It introduces considerations of the laws of scaling and uncertainty analysis, along with a wider coverage of the phenomena encountered during accidents.

FEATURES











Discusses fundamental ideas for various modeling approaches for the macro- and microscale flow conditions in reactors





Covers specific design considerations, such as natural convection and core reliability





Enables readers to better understand the importance of safety considerations in thermal engineering and analysis of modern nuclear plants





Features end-of-chapter problems





Includes a solutions manual for adopting instructors

This book serves as a textbook for advanced undergraduate and graduate students taking courses in nuclear engineering and studying thermal/hydraulic systems in nuclear power plants.
Preface xvii
Acknowledgments xix
Authors xxi
Chapter 1 Formulation of the Reactor Thermal Hydraulic Design Problem 1(18)
1.1 Introduction
1(1)
1.2 Power Reactor Hydraulic Configurations
1(2)
1.3 Boundary Conditions for the Hydraulic Problem
3(1)
1.4 Problems Treated in This Book
4(1)
1.5 Flow in Single Channels
4(3)
1.5.1 Unheated Channel
4(2)
1.5.2 Heated Channel
6(1)
1.6 Flow in Multiple, Heated Channels Connected Only at Plena
7(5)
1.7 Flow in Interconnected, Multiple Heated Channels
12(1)
1.8 Approaches for Reactor Analysis
13(3)
1.8.1 BWR and LMR Core Analysis
14(1)
1.8.2 PWR Core Analysis
14(2)
1.9 Lumped and Distributed Parameter Solution Approaches
16(1)
Problems
17(1)
Acronyms
18(1)
Chapter 2 Scaling of Two-Phase Flows in Complex Nuclear Reactor Systems 19(46)
2.1 Introduction
19(1)
2.1.1 Motivation for Scaling Activity
19(1)
2.1.2 Limitations to the Application of Scaling
20(1)
2.2 Scope of This
Chapter
20(1)
2.3 Dimensional Analysis and the Buckingham Pi Theorem
20(4)
2.3.1 Motivation for Use of This Analysis and Theorem
20(1)
2.3.2 Buckingham Pi Theorem Methodology
21(3)
2.3.3 Limitations
24(1)
2.4 Linear Scaling
24(6)
2.4.1 Definition
24(1)
2.4.2 Development
25(1)
2.4.3 Limitations
25(5)
2.5 Volume (Power to Volume) Scaling
30(3)
2.5.1 Definition
30(1)
2.5.2 Development
30(1)
2.5.2.1 Carbiener and Cudnik's Volume Scaling
30(1)
2.5.2.2 Nahavandi's Volume Scaling
30(1)
2.5.3 Test Facilities
31(2)
2.6 Zuber Scaling Contributions
33(6)
2.6.1 Zuber's Perspective
33(1)
2.6.2 Hierarchical Two-Tiered Scaling (H2TS)
34(5)
2.6.2.1 The Goals and Approach
34(1)
2.6.2.2 Top-Down Step
34(1)
2.6.2.3 Bottom-Up Step
34(1)
2.6.2.4 Distortions
35(4)
2.7 Ishii Scaling
39(12)
2.7.1 Background
39(1)
2.7.2 Three-Level Scaling
40(1)
2.7.3 Advantages of Three-Level Scaling
41(1)
2.7.4 Test Facilities
41(1)
2.7.5 Illustrative Examples
41(10)
2.8 Modified Linear Scaling
51(1)
2.8.1 Goals
51(1)
2.8.2 Comparison to Other Scaling Approaches
51(1)
2.8.3 Limitations
51(1)
2.9 Fractional Scaling Analysis (FSA)
51(3)
2.9.1 The FSA Approach
52(2)
2.9.2 Quantitative Phenomena Ranking
54(1)
2.10 Dynamical System Scaling
54(8)
2.10.1 Dynamical System Scaling Methodology Fundamentals
54(1)
2.10.2 The Process Metric
55(1)
2.10.3 Similarity Criteria
55(7)
Problems
62(1)
Acronyms
62(1)
Definitions
63(1)
References
63(2)
Chapter 3 Single, Heated Channel Transient Analysis 65(34)
3.1 Simplification of Transient Analysis
65(1)
3.2 Solution of Transients with Approximations to the Momentum Equation
65(16)
3.2.1 Sectionalized, Compressible Fluid (SC) Model
66(2)
3.2.2 Momentum Integral Model (MI): Incompressible but Thermally Expandable Fluid
68(1)
3.2.3 Single Mass Velocity (SV) Model
69(1)
3.2.4 The Channel Integral (CI) Model
69(12)
3.3 Solution of Transients by the Method of Characteristics (MOC)
81(15)
3.3.1 Basics of the Method
81(1)
3.3.2 Applications to Single-Phase Transients
82(2)
3.3.3 Applications to Two-Phase Transients
84(15)
3.3.3.1 General Approach
84(5)
3.3.3.2 The Case of an Exponential Flow Decay, Constant Heat Flux
89(7)
Problems
96(1)
Acronyms
97(1)
References
97(2)
Chapter 4 Multiple Heated Channels Connected Only at Plena 99(50)
4.1 Introduction
99(1)
4.2 Governing One-Dimensional, Steady State Flow Equations
99(3)
4.2.1 Continuity Equation
99(1)
4.2.2 Momentum Equation
100(2)
4.2.3 Energy Equation
102(1)
4.3 State Equation
102(1)
4.4 Applicable Boundary Conditions
103(5)
4.4.1 Channel Boundary Conditions
103(1)
4.4.2 Plena Heat Transfer Boundary Conditions
104(6)
4.4.2.1 For Channel 2 in Upflow
105(2)
4.4.2.2 For Channel 2 in Downflow
107(1)
4.5 The General Solution Procedure
108(2)
4.6 Channel Hydraulic Characteristics
110(6)
4.6.1 The Friction-Dominated Regime
111(1)
4.6.2 The Gravity-Dominated Regime
112(4)
4.7 Coupled Conservation Equation: Single-Phase, Nondimensional Solution Procedure
116(15)
4.7.1 Derivation of a Single, Coupled Momentum-Energy Equation
116(3)
4.7.2 Nondimensional Equations
119(5)
4.7.3 Onset of Mixed Convection (Upflow)
124(1)
4.7.4 Adiabatic Channel Flow Reversal
125(1)
4.7.5 Stability of Cooled Upflow
126(2)
4.7.6 Stability of Heated Downflow
128(2)
4.7.7 Preference for Upflow
130(1)
4.7.8 Limits of the Solution Procedure of Section 4.7
131(1)
4.8 Decoupled Conservation Equation: Analytical Solution Procedure for High Flow Rate Cases
131(14)
4.8.1 Prescribed Channel Pressure Drop Condition: Solution Procedure
133(1)
4.8.2 Prescribed Total Flow Condition: Solution Procedure
133(17)
4.8.2.1 Prescribed Total Flow Condition: Fuel Assembly Flow Split for All-Turbulent or All-Laminar Conditions
134(4)
4.8.2.2 Prescribed Total Flow Condition: Flow Split and Temperature Rise in the Transition Flow Regime
138(5)
4.8.2.3 Flow Split Considering Manufacturing Tolerance in Hexagonal Bundles
143(2)
Problems
145(3)
References
148(1)
Chapter 5 Analysis of Interacting Channels by the Porous Media Approach 149(36)
5.1 Introduction
149(1)
5.2 Approaches to Obtaining the Relevant Equations
150(1)
5.3 Fundamental Relations
150(5)
5.3.1 Porosity Definitions
151(3)
5.3.2 Theorems
154(1)
5.4 Derivation of the Volume-Averaged Mass Conservation Equation
155(7)
5.4.1 Some Useful Definitions of Averages
155(2)
5.4.2 Derivation of the Mass Conservation Equation: Method of Integration over a Control Volume
157(4)
5.4.3 Derivation of the Mass Conservation Equation: Application of Conservation Principles to a Volume Containing Distributed Solids
161(1)
5.5 Derivation of the Volumetric Averaged Linear Momentum Equation
162(9)
5.6 Derivation of the Volumetric Averaged Equations of Energy Conservation
171(4)
5.6.1 Energy Equation in Terms of Internal Energy
171(3)
5.6.2 Energy Equation in Terms of Enthalpy
174(1)
5.7 Constitutive Relations
175(1)
5.8 Conclusion
176(5)
Problems
181(2)
References
183(2)
Chapter 6 Analysis of Interacting Channels by the Subchannel Approach 185(66)
6.1 Introduction
185(2)
6.2 Control Volume Selection
187(2)
6.3 Definitions of Terms in the Subchannel Approach
189(3)
6.3.1 Geometry
189(1)
6.3.2 Mass Flow Rates
189(1)
6.3.3 Axial Mass Flow Rate
189(1)
6.3.4 Transverse Mass Flow Rate per Unit Length
190(1)
6.3.4.1 Diversion Cross-Flow Rate
190(1)
6.3.4.2 Turbulent Interchange
190(1)
6.3.5 Momentum and Energy Transfer Rates
191(1)
6.4 Derivation of the Subchannel Conservation Equations: Method of Specialization of the Porous Media Equations
192(12)
6.4.1 Geometric Relations
193(1)
6.4.2 Continuity Equation
194(1)
6.4.3 Energy Equation
194(2)
6.4.4 Axial Linear Momentum Equation
196(3)
6.4.5 Transverse Linear Momentum Equation
199(5)
6.5 Approximations Inherent in the Subchannel Approach
204(3)
6.6 Commonly Used Forms of the Subchannel Conservation Equations
207(6)
6.6.1 Definitions
208(2)
6.6.2 The COBRA Continuity Equation
210(1)
6.6.3 The COBRA Energy Equation
210(1)
6.6.4 The COBRA Axial Momentum Equation
211(1)
6.6.5 The COBRA Transverse Momentum Equation
211(2)
6.6.5.1 Net Lateral Momentum Flux Term
212(1)
6.6.5.2 Pressure Surface Force
212(1)
6.6.5.3 Lateral Gravity Force
212(1)
6.7 Constitutive Equations
213(25)
6.7.1 Surface Heat Transfer Coefficients (Parameter 1) and Axial Friction and Drag (Parameter 4)
214(1)
6.7.2 Enthalpy (Parameter 3) and Axial Velocity (Parameter 6) Transported by Pressure-Driven Cross-Flow
215(1)
6.7.3 Transverse Friction and Form Drag Coefficient (Parameter 7)
215(1)
6.7.4 Transverse Control Volume Aspect Ratio (Parameter 8)
215(1)
6.7.5 Effective Cross-Flow Rate for Molecular and Turbulent Momentum and Energy Transport (Parameters 2 and 5)
216(24)
6.7.5.1 Single Phase
218(10)
6.7.5.2 Two Phase
228(10)
6.7.5.3 Single- and Two-Phase Mixing Vane Grid (MVG) Effects
238(1)
6.8 Beyond the Fundamentals of Subchannel Analysis Methodology of Sections 6.1-6.7
238(2)
6.9 Application of the Subchannel Approach to Core Analysis
240(6)
6.9.1 The Multistage and One-Stage Methods for Core Thermal Hydraulic Subchannel Analysis
240(5)
6.9.2 Multiphysics Simulation of Core Performance
245(1)
Problems
246(3)
Acronyms
249(1)
References
249(2)
Chapter 7 Flow Loops 251(38)
7.1 Introduction
251(1)
7.2 Loop Flow Equations
251(5)
7.3 Steady State, Single-Phase, Natural Circulation
256(10)
7.3.1 Dependence on Elevations of Thermal Centers
256(3)
7.3.2 Friction Factors in Natural Convection
259(7)
7.4 Steady State, Two-Phase, Natural Circulation
266(7)
7.5 Loop Transients
273(12)
7.5.1 Single-Phase Loop Transients
274(10)
7.5.1.1 Hydraulic Considerations
274(2)
7.5.1.2 Primary Coolant Temperature
276(6)
7.5.1.3 Thermal Time Constants of the Core
282(2)
7.5.2 Two-Phase Loop Transients
284(1)
7.5.3 Detailed Pump Representation
284(1)
Problems
285(3)
Acronyms
288(1)
References
288(1)
Chapter 8 Steady State and Transient Analysis of Centrifugal Pumps 289(36)
8.1 Introduction
289(1)
8.2 Centrifugal Pump Performance
289(11)
8.2.1 Steady State Operation of Centrifugal Pumps
289(3)
8.2.2 Pump Characteristic Curve versus System Curve
292(1)
8.2.3 Pump Efficiency, Brake and Hydraulic Horsepower
293(4)
8.2.4 Prevention of Pump Cavitation - NPSH
297(1)
8.2.5 Required versus Available NPSH
298(1)
8.2.6 NPSH of ECCS Pumps Following LOCA
298(1)
8.2.7 Pump Similarity Rules
299(1)
8.3 Transient Analysis of Reactor Coolant Pumps
300(17)
8.3.1 Impeller Speed Following Loss of Power to Operating Pump
302(1)
8.3.2 Loop Flow Transient
302(2)
8.3.3 Simplifications of Loop Momentum Equation
304(2)
8.3.4 Nondimensionalization of Impeller Angular Momentum Equation
306(1)
8.3.5 Solution of Flow Decay Following Pump Trip
307(3)
8.3.6 Flow Rate Following Pump Startup
310(1)
8.3.7 Pump Mathematical Model for Plant Events
311(14)
8.3.7.1 Single-Phase Operation
311(5)
8.3.7.2 Two-Phase Operation
316(1)
Problems
317(6)
Acronyms
323(1)
References
324(1)
Chapter 9 Thermal Analysis of Pressurizers 325(28)
9.1 Introduction
325(1)
9.2 Pressurizer Descriptions
325(1)
9.2.1 Pressurizer Surge Line
325(1)
9.3 Pressurizer Functions
326(4)
9.3.1 Pressurizer Heaters
327(1)
9.3.2 Pressurizer Safety and Relief Valves
327(1)
9.3.3 Pressurizer Spray
328(1)
9.3.4 Chemical and Volume Control System
328(1)
9.3.5 Pressurizer Control System
328(1)
9.3.6 Pressurizer Response to Transients
328(2)
9.4 Formulation for Transient Analysis
330(6)
9.4.1 Modeling Approach
330(1)
9.4.2 Processes Crossing Control Surface
331(1)
9.4.3 Application of Conservation Equations - Continuity
332(1)
9.4.4 Application of Conservation Equations - Energy
332(1)
9.4.5 Closure by Constitutive Equation - Volume Constraint
333(1)
9.4.6 Solution of the Set of Equations
334(1)
9.4.7 Integration of the State Variables
335(1)
9.5 Evaluation of Constitutive Equations
336(9)
9.5.1 Wall Heat Transfer
336(1)
9.5.2 Condensation in Pressurizer
337(1)
9.5.3 Main Spray Flow Rate
338(1)
9.5.4 Flow through Safety and Relief Valves
339(2)
9.5.4.1 Flow of Pressurized Subcooled Water through Valve
339(1)
9.5.4.2 Flow of Subcooled Water Flashing at the Valve
339(1)
9.5.4.3 Two-Phase Flow of Steam and Water through Valve
339(1)
9.5.4.4 Flow of Saturated Steam through Valve
339(1)
9.5.4.5 Flow of Superheated Steam through Valve
340(1)
9.5.5 Surge Flow Rate
341(2)
9.5.6 Pressurizer Heater
343(1)
9.5.7 Pressurizer Water Level
344(1)
9.5.8 Exchanges at the Bulk Interface
344(1)
9.6 Classification of RCS Break Sizes
345(4)
9.6.1 Total Loss of Feedwater and Once-through Core Cooling
345(1)
9.6.2 The Three Mile Island Accident
346(3)
Problems
349(2)
Acronyms and Abbreviations
351(1)
References
352(1)
Chapter 10 Thermal Analysis of Containments 353(40)
10.1 Introduction
353(1)
10.2 Types of Containment Buildings
353(3)
10.3 Design Basis Accident (DBA)
356(4)
10.3.1 LOCA Evaluation
356(2)
10.3.1.1 Types of LOCA Safety Analysis
357(1)
10.3.1.2 Managing the LOCA
358(1)
10.3.2 MSLB Evaluation
358(2)
10.4 Containment Design Limits
360(1)
10.4.1 Containment Pressure
361(1)
10.4.2 Containment Temperature
361(1)
10.5 Mixture of Non-reactive Ideal Gases
361(1)
10.6 Containment Response to Thermal Loads
362(10)
10.6.1 Forcing Functions: Flow Rates of Mass and Energy
362(1)
10.6.2 Conservations of Mass and Energy for Containment
363(6)
10.6.2.1 Number of Equations and Unknowns
365(1)
10.6.2.2 Solution to Containment Equations
365(1)
10.6.2.3 Determination of Containment Pressure
366(1)
10.6.2.4 Special Case: Charging Rigid CVs with Ideal Gases
366(3)
10.6.3 Alternative Solution of Containment Equations
369(3)
10.7 Partition of Break Flow
372(1)
10.8 Phase Change: Pool-Atmosphere Interaction
372(3)
10.8.1 Processes at the Vapor-Liquid Interface
374(1)
10.9 Heat Conductors Heat Transfer
375(5)
10.9.1 Condensation Heat Transfer Coefficient: Heat Conductors
376(5)
10.9.1.1 Tagami Correlation
376(1)
10.9.1.2 Uchida Correlation
377(1)
10.9.1.3 Gido-Koestel Correlation
378(2)
10.10 Simple Relation between LOCA Energy, PPeak and VC
380(1)
10.11 Equipment Qualification
381(1)
10.12 Effect of Debris on Long-Term Cooling
381(2)
10.12.1 Debris Definition
381(1)
10.12.2 ECCS Function
382(1)
10.12.3 Debris Effects
382(1)
10.12.4 Debris Effects at Sump Strainer
382(11)
10.12.4.1 Debris Effects: Upstream of Sump Strainer
382(1)
10.12.4.2 Debris Effects: Downstream of Sump Strainer
382(1)
10.12.4.3 In-Vessel: Chemical Precipitates
383(1)
10.13 Containment Analysis Computer Codes
383(1)
Problems
384(5)
Acronyms
389(1)
References
390(3)
Chapter 11 Thermal Analysis of Steam Generators and Condensers 393(50)
11.1 Introduction
393(5)
11.1.1 Types of PWR Steam Generators
393(2)
11.1.2 Flow Path in Vertical UTSG and OTSG
395(2)
11.1.3 Degree of Subcooling and Degree of Superheat
397(1)
11.2 Steam Generator Control System
398(1)
11.3 Steam Generator Tube Integrity
399(5)
11.3.1 Tube Failure Mechanisms
399(1)
11.3.2 Vertical versus Horizontal SG
400(2)
11.3.3 Steam Generator Tube Rupture Event
402(2)
11.4 Analysis of PWR OTSG
404(7)
11.4.1 Onset of Nucleate Boiling and Saturation
405(1)
11.4.2 Heat Exchanger Analysis - SG Economizer Region
406(4)
11.4.3 Temperature Profile - SG Evaporator Region
410(1)
11.5 Thermal Design of PWR UTSG
411(5)
11.6 PWR UTSG Design Optimization
416(3)
11.6.1 UTSG Cost Components
416(3)
11.7 SG Dryout and Estimation of Time to Uncover Core
419(1)
11.8 Transient Analysis of UTSG
420(10)
11.8.1 SG Transient Model
425(3)
11.8.1.1 Component-Flow Path Modules
425(1)
11.8.1.2 Model Description
425(1)
11.8.1.3 Flow Path Module: Loop Flow Rate Formulation
426(1)
11.8.1.4 Flow Path Module: Loop Flow Rate Determination
427(1)
11.8.2 Tube Temperature Distribution
428(2)
11.9 Analysis of Power Plant Condenser
430(5)
Problems
435(5)
Acronyms and Abbreviations
440(1)
References
441(2)
Chapter 12 Fundamentals of Reactor Transient Simulation 443(34)
12.1 Introduction
443(1)
12.2 Lumped PWR Model
444(4)
12.2.1 Allocation of CV
444(1)
12.2.2 Processes Crossing Control Surface
444(1)
12.2.3 Balancing Equations and Unknowns
444(2)
12.2.4 Formulation of Processes in the RCS and PZR
446(2)
12.3 Data Description and Preparation
448(2)
12.3.1 RCS Flow Rate
448(1)
12.3.2 RCS Temperature Distribution
448(1)
12.3.3 SG Secondary Side
449(1)
12.3.4 Heat Transfer Coefficient
449(1)
12.4 PWR Detailed Nodalization
450(2)
12.5 Approaches in Formulating Various Thermal Hydraulic Models
452(2)
12.5.1 Three-Equation Model
452(1)
12.5.2 Four-Equation Model
453(1)
12.5.3 Five-Equation Model
454(1)
12.6 Transport Equations: Single-Phase Flow
454(2)
12.7 Two-Fluid Model
456(11)
12.7.1 Six-Equation Model: Single Pressure
456(7)
12.7.1.1 Two-Fluid Model: Turbulent Flow
457(1)
12.7.1.2 Six-Equation Model: Continuity Equation
457(1)
12.7.1.3 Six-Equation Model: Momentum Equation
458(1)
12.7.1.4 Six-Equation Model: Energy Equation
458(5)
12.7.2 Seven-Equation Model: Two Pressure
463(1)
12.7.3 Constitutive Relations
464(13)
12.7.3.1 Constitutive Relation for the Homogeneous Equilibrium Model
465(1)
12.7.3.2 Constitutive Relation for the Two-Fluid Model
465(2)
12.8 Solution Method
467(3)
Problems
470(3)
Acronyms
473(1)
References
473(4)
Chapter 13 Treatment of Uncertainties in Reactor Thermal Analysis 477(62)
13.1 Overview
477(1)
13.2 Scope
477(1)
13.3 Statistical Fundamentals: Estimation of Distribution Properties
477(13)
13.3.1 Estimating the Mean and Standard Deviation of Distributions
478(1)
13.3.2 The Normal Distribution
479(4)
13.3.3 Confidence Level
483(1)
13.3.4 Estimating the Population Mean
484(3)
13.3.5 Estimating the Population Standard Deviation
487(3)
13.4 Fundamentals of Deterministic Approaches
490(5)
13.4.1 Deterministic Approaches: Forward Sensitivity Analysis
490(5)
13.4.2 Deterministic Approaches: Adjoint Sensitivity Analysis
495(1)
13.4.3 Deterministic Approaches: Relationship to Sensitivity Analysis
495(1)
13.5 Relevant Fundamentals: Statistical-Based Approaches
495(3)
13.5.1 Monte Carlo
495(1)
13.5.2 Order Statistics Using Wilks' Formula
496(1)
13.5.3 CSAU (Code Scaling, Applicability and Uncertainty)
497(1)
13.5.4 Method of Extrapolation of Output Uncertainties (CIAU)
498(1)
13.6 Hot Spots and Subfactors
498(7)
13.7 Combinational Methods: Single Hot Spot in Core
505(15)
13.7.1 Deterministic Method Formulations
508(2)
13.7.2 Statistical Method Formulations
510(4)
13.7.2.1 Product Statistical Method
511(1)
13.7.2.2 Sum Statistical Method
511(3)
13.7.3 Semistatistical Methods
514(7)
13.7.3.1 Semistatistical Vertical Approach
515(1)
13.7.3.2 Semistatistical Horizontal Approach
515(5)
13.8 Extension to More than One Hot Spot
520(1)
13.9 Overall Core Reliability
521(9)
13.9.1 Methods That Do Not Distinguish between the Character of Variables
522(1)
13.9.2 Methods That Do Distinguish between the Character of Variables
523(7)
13.9.2.1 The Effects of Allowing a Nonzero Number of Locations to Exceed the Specified Design Limit
524(4)
13.9.2.2 Method of Correlated Temperatures of Arnsberger and Mazumdar [ 5,6]
528(2)
13.10 Conclusion
530(1)
Problems
531(5)
Acronyms
536(1)
References
536(3)
Appendix A: Selected Nomenclature 539(18)
Appendix B: Physical and Mathematical Constants 557(2)
Appendix C: Unit Systems 559(10)
Appendix D: Mathematical Tables 569(8)
Appendix E: Thermodynamic Properties 577(16)
Appendix F: Thermophysical Properties of Some Substances 593(4)
Appendix G: Dimensionless Groups of Fluid Mechanics and Heat Transfer 597(2)
Appendix H: Multiplying Prefixes 599(2)
Appendix I: List of Elements 601(2)
Appendix J: Square and Hexagonal Rod Array Dimensions 603(4)
Appendix K: Parameters for Typical BWR-5 and PWR Reactors 607(4)
Appendix L: Discretization of Lumped Parameter Conservation Equations 611(10)
Appendix M: Proof of Local Volume-Averaging Theorems of
Chapter 5
621(4)
Index 625
Neil E. Todreas, Mujid S. Kazimi, Mahmoud Massoud