|
|
1 | (20) |
|
|
5 | (2) |
|
|
7 | (2) |
|
|
9 | (3) |
|
1.4 Review of Analytical-Numerical Methods in Moving Load Problems |
|
|
12 | (6) |
|
|
13 | (1) |
|
|
14 | (3) |
|
1.4.3 Lagrange Formulation |
|
|
17 | (1) |
|
|
18 | (3) |
|
|
21 | (10) |
|
2.1 A Massless String under a Moving Inertial Load |
|
|
22 | (4) |
|
|
23 | (2) |
|
|
25 | (1) |
|
2.2 Discontinuity of the Solution |
|
|
26 | (3) |
|
|
29 | (2) |
|
3 Semi-analytical Methods |
|
|
31 | (46) |
|
|
32 | (14) |
|
|
32 | (5) |
|
3.1.2 The Lagrange Equation |
|
|
37 | (9) |
|
3.2 Bernoulli--Euler Beam |
|
|
46 | (9) |
|
|
47 | (3) |
|
3.2.2 The Lagrange Equation of the Second Kind |
|
|
50 | (5) |
|
|
55 | (1) |
|
|
55 | (11) |
|
|
56 | (1) |
|
3.3.2 The Lagrange Equation |
|
|
56 | (3) |
|
|
59 | (2) |
|
3.3.4 Conclusions and Discussion |
|
|
61 | (5) |
|
3.4 Bernoulli--Euler Beam vs. Timoshenko Beam |
|
|
66 | (1) |
|
|
67 | (3) |
|
3.6 The Renaudot Approach vs. The Yakushev Approach |
|
|
70 | (7) |
|
3.6.1 The Renaudot Approach |
|
|
71 | (1) |
|
3.6.2 The Yakushev Approach |
|
|
72 | (5) |
|
4 Review of Numerical Methods of Solution |
|
|
77 | (18) |
|
|
79 | (5) |
|
4.1.1 String Vibrations under a Moving Oscillator |
|
|
79 | (4) |
|
4.1.2 Beam Vibrations under a Moving Oscillator |
|
|
83 | (1) |
|
|
84 | (11) |
|
4.2.1 A Bernoulli--Euler Beam Subjected to an Inertial Load |
|
|
85 | (4) |
|
4.2.2 A Timoshenko Beam Subjected to an Inertial Load |
|
|
89 | (6) |
|
5 Classical Numerical Methods of Time Integration |
|
|
95 | (28) |
|
5.1 Integration of the First Order Differential Equations |
|
|
97 | (5) |
|
5.2 Single-Step Method SSpj |
|
|
102 | (3) |
|
5.3 Central Difference Method |
|
|
105 | (4) |
|
5.3.1 Stability of the Method |
|
|
107 | (1) |
|
5.3.2 Accuracy of the Method |
|
|
108 | (1) |
|
|
109 | (5) |
|
5.4.1 Explicit Adams Formulas (Open) |
|
|
110 | (2) |
|
5.4.2 Implicit Adams Formulas (Closed) |
|
|
112 | (2) |
|
|
114 | (3) |
|
|
117 | (1) |
|
|
118 | (1) |
|
5.8 The Park--Housner Method |
|
|
118 | (3) |
|
5.8.1 Stability of the Park--Housner Method |
|
|
119 | (2) |
|
|
121 | (2) |
|
6 Space--Time Finite Element Method |
|
|
123 | (58) |
|
6.1 Formulation of the Method---Displacement Approach |
|
|
129 | (9) |
|
6.1.1 Space--Time Finite Elements in the Displacement Description |
|
|
135 | (3) |
|
6.2 Properties of the Integration Schemes |
|
|
138 | (2) |
|
6.2.1 Accuracy of Methods |
|
|
140 | (1) |
|
6.3 Velocity Formulation of the Method |
|
|
140 | (14) |
|
6.3.1 One Degree of Freedom System |
|
|
140 | (4) |
|
6.3.2 Discretization of the Differential Equation of String Vibrations |
|
|
144 | (5) |
|
6.3.3 General Case of Elasticity |
|
|
149 | (2) |
|
6.3.4 Other Functions of the Virtual Velocity |
|
|
151 | (3) |
|
6.4 Space--Time Element Method and Other Time Integration Methods |
|
|
154 | (6) |
|
|
154 | (3) |
|
|
157 | (1) |
|
6.4.3 Non-inertial Problems |
|
|
158 | (2) |
|
6.5 Space--Time Finite Element Method vs. Newmark Method |
|
|
160 | (1) |
|
|
161 | (8) |
|
6.6.1 Property of Space Division |
|
|
162 | (5) |
|
6.6.2 Numerical Efficiency |
|
|
167 | (2) |
|
6.7 Simplex Elements in the Displacement Description |
|
|
169 | (7) |
|
6.7.1 Triangular Element of a Bar Vibrating Axially |
|
|
169 | (1) |
|
6.7.2 Space--Time Finite Element of the Beam of Moderate Height |
|
|
170 | (2) |
|
6.7.3 Tetrahedral Space--Time Element of a Plate |
|
|
172 | (4) |
|
6.8 Triangular Elements Expressed in Velocities |
|
|
176 | (5) |
|
7 Space--Time Finite Elements and a Moving Load |
|
|
181 | (42) |
|
7.1 Space--Time Finite Element of a String |
|
|
182 | (6) |
|
7.1.1 Discretization of the String Element Carrying a Moving Mass |
|
|
182 | (2) |
|
|
184 | (4) |
|
|
188 | (1) |
|
7.2 Space--Time Elements for a Bernoulli--Euler Beam Carrying a Moving Mass |
|
|
188 | (10) |
|
|
190 | (8) |
|
7.3 Space--Time Element of Timoshenko Beam Carrying a Moving Mass |
|
|
198 | (6) |
|
|
203 | (1) |
|
7.4 Space--Time Finite Plate Element Carrying a Moving Mass |
|
|
204 | (14) |
|
|
204 | (9) |
|
|
213 | (2) |
|
7.4.3 Plate Placed on an Elastic Foundation |
|
|
215 | (3) |
|
7.5 Problems with Zero Mass Density |
|
|
218 | (5) |
|
8 The Newmark Method and a Moving Inertial Load |
|
|
223 | (18) |
|
8.1 The Newmark Method in Moving Mass Problems |
|
|
223 | (3) |
|
8.2 The Newmark Method in the Vibrations of String |
|
|
226 | (3) |
|
8.3 The Newmark Method in Vibrations of the Bernoulli--Euler Beam |
|
|
229 | (1) |
|
8.4 The Newmark Method in Vibrations of a Timoshenko Beam |
|
|
230 | (1) |
|
|
230 | (3) |
|
8.6 Accelerating Mass---Numerical Approach |
|
|
233 | (6) |
|
|
233 | (2) |
|
8.6.2 The Finite Element Carrying the Moving Mass Particle |
|
|
235 | (3) |
|
8.6.3 Accelerating Mass---Examples |
|
|
238 | (1) |
|
|
239 | (2) |
|
9 Meshfree Methods in Moving Load Problems |
|
|
241 | (6) |
|
9.1 Meshless Methods (Element-Free Galerkin Method) |
|
|
241 | (2) |
|
|
243 | (4) |
|
10 Examples of Applications |
|
|
247 | (24) |
|
10.1 Dynamics of the Classical Vehicle-Track System |
|
|
249 | (4) |
|
10.2 Dynamics of the System Vehicle---Y-Type Track |
|
|
253 | (9) |
|
10.3 Dynamics of Subway Track |
|
|
262 | (4) |
|
10.4 Vibrations of Airport Runways |
|
|
266 | (5) |
|
|
271 | (14) |
|
|
271 | (14) |
|
A.1 String---Space--Time Element Method |
|
|
271 | (3) |
|
A.2 Timoshenko Beam---Newmark Method |
|
|
274 | (3) |
|
A.3 Mindlin Plate---Space--Time Element Method |
|
|
277 | (6) |
|
A.4 Kirchhoff Plate --- Space-Time Element Method |
|
|
283 | (2) |
References |
|
285 | (8) |
Index |
|
293 | |