Muutke küpsiste eelistusi

E-raamat: Numerical Analysis of Vibrations of Structures under Moving Inertial Load

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations such as beams and plates. More complex structures such as frames, grids, shells, and three-dimensional objects, can be treated with the use of the solutions given in this book.

Arvustused

From the reviews:

The authors deal with many numerical methods to solve problems concerning vibrations of structures under moving inertial loads; semi-analytical methods are presented to better understand the differential equations that govern the mechanical problems. An appendix contains computer programs for some structures, and a rich bibliography (154 titles) follows. The book can be useful for many engineers, researchers and students, and represents a valuable contribution to the field. (Petre P. Teodorescu, Zentralblatt MATH, Vol. 1254, 2013)

1 Introduction
1(20)
1.1 Literature Review
5(2)
1.2 Solution Methods
7(2)
1.3 Approximate Methods
9(3)
1.4 Review of Analytical-Numerical Methods in Moving Load Problems
12(6)
1.4.1 d'Alembert Method
13(1)
1.4.2 Fourier Method
14(3)
1.4.3 Lagrange Formulation
17(1)
1.5 Examples
18(3)
2 Analytical Solutions
21(10)
2.1 A Massless String under a Moving Inertial Load
22(4)
2.1.1 Case of α ≠ 1
23(2)
2.1.2 Case of α = 1
25(1)
2.2 Discontinuity of the Solution
26(3)
2.3 Conclusions
29(2)
3 Semi-analytical Methods
31(46)
3.1 String
32(14)
3.1.1 Fourier Analysis
32(5)
3.1.2 The Lagrange Equation
37(9)
3.2 Bernoulli--Euler Beam
46(9)
3.2.1 Fourier Solution
47(3)
3.2.2 The Lagrange Equation of the Second Kind
50(5)
3.2.3 Conclusions
55(1)
3.3 Timoshenko Beam
55(11)
3.3.1 Fourier Solution
56(1)
3.3.2 The Lagrange Equation
56(3)
3.3.3 Examples
59(2)
3.3.4 Conclusions and Discussion
61(5)
3.4 Bernoulli--Euler Beam vs. Timoshenko Beam
66(1)
3.5 Plate
67(3)
3.6 The Renaudot Approach vs. The Yakushev Approach
70(7)
3.6.1 The Renaudot Approach
71(1)
3.6.2 The Yakushev Approach
72(5)
4 Review of Numerical Methods of Solution
77(18)
4.1 Oscillator
79(5)
4.1.1 String Vibrations under a Moving Oscillator
79(4)
4.1.2 Beam Vibrations under a Moving Oscillator
83(1)
4.2 Inertial Load
84(11)
4.2.1 A Bernoulli--Euler Beam Subjected to an Inertial Load
85(4)
4.2.2 A Timoshenko Beam Subjected to an Inertial Load
89(6)
5 Classical Numerical Methods of Time Integration
95(28)
5.1 Integration of the First Order Differential Equations
97(5)
5.2 Single-Step Method SSpj
102(3)
5.3 Central Difference Method
105(4)
5.3.1 Stability of the Method
107(1)
5.3.2 Accuracy of the Method
108(1)
5.4 The Adams Methods
109(5)
5.4.1 Explicit Adams Formulas (Open)
110(2)
5.4.2 Implicit Adams Formulas (Closed)
112(2)
5.5 The Newmark Method
114(3)
5.6 The Bossak Method
117(1)
5.7 The Park Method
118(1)
5.8 The Park--Housner Method
118(3)
5.8.1 Stability of the Park--Housner Method
119(2)
5.9 The Trujillo Method
121(2)
6 Space--Time Finite Element Method
123(58)
6.1 Formulation of the Method---Displacement Approach
129(9)
6.1.1 Space--Time Finite Elements in the Displacement Description
135(3)
6.2 Properties of the Integration Schemes
138(2)
6.2.1 Accuracy of Methods
140(1)
6.3 Velocity Formulation of the Method
140(14)
6.3.1 One Degree of Freedom System
140(4)
6.3.2 Discretization of the Differential Equation of String Vibrations
144(5)
6.3.3 General Case of Elasticity
149(2)
6.3.4 Other Functions of the Virtual Velocity
151(3)
6.4 Space--Time Element Method and Other Time Integration Methods
154(6)
6.4.1 Convergence
154(3)
6.4.2 Phase Error
157(1)
6.4.3 Non-inertial Problems
158(2)
6.5 Space--Time Finite Element Method vs. Newmark Method
160(1)
6.6 Simplex Elements
161(8)
6.6.1 Property of Space Division
162(5)
6.6.2 Numerical Efficiency
167(2)
6.7 Simplex Elements in the Displacement Description
169(7)
6.7.1 Triangular Element of a Bar Vibrating Axially
169(1)
6.7.2 Space--Time Finite Element of the Beam of Moderate Height
170(2)
6.7.3 Tetrahedral Space--Time Element of a Plate
172(4)
6.8 Triangular Elements Expressed in Velocities
176(5)
7 Space--Time Finite Elements and a Moving Load
181(42)
7.1 Space--Time Finite Element of a String
182(6)
7.1.1 Discretization of the String Element Carrying a Moving Mass
182(2)
7.1.2 Numerical Results
184(4)
7.1.3 Conclusions
188(1)
7.2 Space--Time Elements for a Bernoulli--Euler Beam Carrying a Moving Mass
188(10)
7.2.1 Numerical Results
190(8)
7.3 Space--Time Element of Timoshenko Beam Carrying a Moving Mass
198(6)
7.3.1 Conclusions
203(1)
7.4 Space--Time Finite Plate Element Carrying a Moving Mass
204(14)
7.4.1 Thin Plate
204(9)
7.4.2 Thick Plate
213(2)
7.4.3 Plate Placed on an Elastic Foundation
215(3)
7.5 Problems with Zero Mass Density
218(5)
8 The Newmark Method and a Moving Inertial Load
223(18)
8.1 The Newmark Method in Moving Mass Problems
223(3)
8.2 The Newmark Method in the Vibrations of String
226(3)
8.3 The Newmark Method in Vibrations of the Bernoulli--Euler Beam
229(1)
8.4 The Newmark Method in Vibrations of a Timoshenko Beam
230(1)
8.5 Numerical Results
230(3)
8.6 Accelerating Mass---Numerical Approach
233(6)
8.6.1 Mathematical Model
233(2)
8.6.2 The Finite Element Carrying the Moving Mass Particle
235(3)
8.6.3 Accelerating Mass---Examples
238(1)
8.7 Conclusions
239(2)
9 Meshfree Methods in Moving Load Problems
241(6)
9.1 Meshless Methods (Element-Free Galerkin Method)
241(2)
9.2 Results
243(4)
10 Examples of Applications
247(24)
10.1 Dynamics of the Classical Vehicle-Track System
249(4)
10.2 Dynamics of the System Vehicle---Y-Type Track
253(9)
10.3 Dynamics of Subway Track
262(4)
10.4 Vibrations of Airport Runways
266(5)
Appendix
271(14)
A Computer Programs
271(14)
A.1 String---Space--Time Element Method
271(3)
A.2 Timoshenko Beam---Newmark Method
274(3)
A.3 Mindlin Plate---Space--Time Element Method
277(6)
A.4 Kirchhoff Plate --- Space-Time Element Method
283(2)
References 285(8)
Index 293